Shing-Ru Yang, Shih-Tang Lan, Yi-Ting Wu, Tsuyoshi Honjo, Tzu-Ping Lin
{"title":"Applying expanded metal mesh for outdoor shades in outdoor thermal environments","authors":"Shing-Ru Yang, Shih-Tang Lan, Yi-Ting Wu, Tsuyoshi Honjo, Tzu-Ping Lin","doi":"10.1007/s00484-023-02494-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the applicability of expanded metal meshes (EMMs) in horizontal shading devices. We performed simulations and experiments with EMMs with different opening ratios and directions. We established various experimental and control groups to measure air temperature, surface temperature, and black globe temperature. After the comparison of simulation and experimental data, we used Grasshopper to simulate long-term climate situations. The research results can serve as reference for users in Tainan and provide customized suggestions. The findings can serve as a paradigm for parametric design to analyze EMMs. In design projects involving outdoor horizontal shading devices, these results can be used in the design phase for evaluation. Full-day measurements revealed that EMMs with small openings exhibited favorable shading effects. In the Tainan area, we suggest using north-facing EMMs; in our simulations result, 70% of sunshine did not pass through the mesh in a day. For shading equipment in the morning, west-facing EMMs should be used because they blocked 50–90% of sunshine. For recreational areas in the afternoon and evening, east-facing EMMs can block 50–90% of sunshine after noon. In Taiwan, south-facing EMMs are not advised because their shading performance is suboptimal in the morning and afternoon.</p></div>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":"67 7","pages":"1251 - 1261"},"PeriodicalIF":3.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00484-023-02494-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
This study investigated the applicability of expanded metal meshes (EMMs) in horizontal shading devices. We performed simulations and experiments with EMMs with different opening ratios and directions. We established various experimental and control groups to measure air temperature, surface temperature, and black globe temperature. After the comparison of simulation and experimental data, we used Grasshopper to simulate long-term climate situations. The research results can serve as reference for users in Tainan and provide customized suggestions. The findings can serve as a paradigm for parametric design to analyze EMMs. In design projects involving outdoor horizontal shading devices, these results can be used in the design phase for evaluation. Full-day measurements revealed that EMMs with small openings exhibited favorable shading effects. In the Tainan area, we suggest using north-facing EMMs; in our simulations result, 70% of sunshine did not pass through the mesh in a day. For shading equipment in the morning, west-facing EMMs should be used because they blocked 50–90% of sunshine. For recreational areas in the afternoon and evening, east-facing EMMs can block 50–90% of sunshine after noon. In Taiwan, south-facing EMMs are not advised because their shading performance is suboptimal in the morning and afternoon.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.