New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments

IF 8.6 2区 化学 Q1 Chemistry
Saki Matsumoto, Naoki Sugimoto
{"title":"New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments","authors":"Saki Matsumoto,&nbsp;Naoki Sugimoto","doi":"10.1007/s41061-021-00329-7","DOIUrl":null,"url":null,"abstract":"<p>The right-handed double-helical B-form structure (B-form duplex) has been widely recognized as the canonical structure of nucleic acids since it was first proposed by James Watson and Francis Crick in 1953. This B-form duplex model has a monochronic and static structure and codes genetic information within a sequence. Interestingly, DNA and RNA can form various non-canonical structures, such as hairpin loops, left-handed helices, triplexes, tetraplexes of G-quadruplex and i-motif, and branched junctions, in addition to the canonical structure. The formation of non-canonical structures depends not only on sequence but also on the surrounding environment. Importantly, these non-canonical structures may exhibit a wide variety of biological roles by changing their structures and stabilities in response to the surrounding environments, which undergo vast changes at specific locations and at specific times in cells. Here, we review recent progress regarding the interesting behaviors and functions of nucleic acids controlled by molecularly crowded cellular conditions. New insights gained from recent studies suggest that nucleic acids not only code genetic information in sequences but also have unknown functions regarding their structures and stabilities through drastic structural changes in cellular environments.</p>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"379 3","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00329-7","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00329-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 13

Abstract

The right-handed double-helical B-form structure (B-form duplex) has been widely recognized as the canonical structure of nucleic acids since it was first proposed by James Watson and Francis Crick in 1953. This B-form duplex model has a monochronic and static structure and codes genetic information within a sequence. Interestingly, DNA and RNA can form various non-canonical structures, such as hairpin loops, left-handed helices, triplexes, tetraplexes of G-quadruplex and i-motif, and branched junctions, in addition to the canonical structure. The formation of non-canonical structures depends not only on sequence but also on the surrounding environment. Importantly, these non-canonical structures may exhibit a wide variety of biological roles by changing their structures and stabilities in response to the surrounding environments, which undergo vast changes at specific locations and at specific times in cells. Here, we review recent progress regarding the interesting behaviors and functions of nucleic acids controlled by molecularly crowded cellular conditions. New insights gained from recent studies suggest that nucleic acids not only code genetic information in sequences but also have unknown functions regarding their structures and stabilities through drastic structural changes in cellular environments.

Abstract Image

细胞微环境控制下核酸功能的新认识
自1953年由James Watson和Francis Crick首次提出以来,右手双螺旋b型结构(B-form duplex)一直被广泛认为是核酸的典型结构。该b型双工模型具有单时性和静态结构,并在序列内编码遗传信息。有趣的是,除了典型结构外,DNA和RNA还可以形成各种非典型结构,如发夹环、左旋螺旋、三联体、g -四联体和i-基序的四联体、支链结等。非规范结构的形成不仅与序列有关,还与周围环境有关。重要的是,这些非规范结构可能通过改变其结构和稳定性来响应周围环境,从而表现出各种各样的生物学作用,这些环境在细胞的特定位置和特定时间发生巨大变化。在这里,我们回顾了最近关于分子拥挤细胞条件下核酸的有趣行为和功能的研究进展。最近的研究表明,核酸不仅在序列中编码遗传信息,而且在细胞环境中通过剧烈的结构变化对其结构和稳定性具有未知的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信