A review on different theoretical models of electrocaloric effect for refrigeration

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Cancan Shao, A. A. Amirov, Houbing Huang
{"title":"A review on different theoretical models of electrocaloric effect for refrigeration","authors":"Cancan Shao,&nbsp;A. A. Amirov,&nbsp;Houbing Huang","doi":"10.1007/s11708-023-0884-6","DOIUrl":null,"url":null,"abstract":"<div><p>The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 4","pages":"478 - 503"},"PeriodicalIF":3.1000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0884-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

Abstract

The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.

制冷电热效应的不同理论模型综述
表征电热效应的性能参数分别是等温熵变和绝热温度变化。本文综述了基于不同理论模型的铁电材料的热效应。首先,提供了四种不同的计算尺度(基于第一性原理的有效哈密尔顿量、Landau-Devonshire热力学理论、相场模拟和有限元分析)来解释计算热效应的基本理论。然后,全面综述了近年来这些方法在调控电热效应和电热效应产生机理方面的研究进展。最后,总结并展望了基于不同计算方法构建的框架对更多新型电热材料的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信