{"title":"Analysis of Parametric Influences and Tribological Behaviour of Al 6063–SiC–Al2O3","authors":"P. Rajasekaran","doi":"10.3103/S1067821222020092","DOIUrl":null,"url":null,"abstract":"<p>Of late, there has been an increase in the application of Metal Matrix Composites (MMCs) as they provide significant mechanical and tribological properties. In tune with the rapid global attention to this composite, this research analysis is an attempt on employing Taguchi method in order to minimize the rate of wear and friction on co-efficiency in aluminium MMC. The study involves in investing the tribological behaviour of aluminium alloy, Al-6063, by reinforcing with silicon carbide and aluminium oxide particles. As such, the investigation was carried out by fabrication the alloy by stir casting process. In addition, wear test was performed to analyse the wear and frictional properties of the metal matrix composites with the aid of a pin-on-disc wear tester. For the purpose of the process in an effective manner, Taguchi technique was adopted to perform the experiments on a fixed plan. Further, in analysing the experimental data, A L<sub>9</sub> Orthogonal array was applied. More analyses such as the influencing effect of higher load applied, higher speed of sliding and distance found in sliding on wear rate, and the friction occurring out of co-efficiency during the process of wearing were carried out by employing ANOVA and regression equation. These measures were used for each response for the abovementioned analyses. The experimental results exhibit that the highest influence is observed in sliding distance, while the speed of load and sliding coming behind it. In order to prove the justification of this study, the experimental results were verified with the tests carried out for confirmation.</p>","PeriodicalId":765,"journal":{"name":"Russian Journal of Non-Ferrous Metals","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Non-Ferrous Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1067821222020092","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
Of late, there has been an increase in the application of Metal Matrix Composites (MMCs) as they provide significant mechanical and tribological properties. In tune with the rapid global attention to this composite, this research analysis is an attempt on employing Taguchi method in order to minimize the rate of wear and friction on co-efficiency in aluminium MMC. The study involves in investing the tribological behaviour of aluminium alloy, Al-6063, by reinforcing with silicon carbide and aluminium oxide particles. As such, the investigation was carried out by fabrication the alloy by stir casting process. In addition, wear test was performed to analyse the wear and frictional properties of the metal matrix composites with the aid of a pin-on-disc wear tester. For the purpose of the process in an effective manner, Taguchi technique was adopted to perform the experiments on a fixed plan. Further, in analysing the experimental data, A L9 Orthogonal array was applied. More analyses such as the influencing effect of higher load applied, higher speed of sliding and distance found in sliding on wear rate, and the friction occurring out of co-efficiency during the process of wearing were carried out by employing ANOVA and regression equation. These measures were used for each response for the abovementioned analyses. The experimental results exhibit that the highest influence is observed in sliding distance, while the speed of load and sliding coming behind it. In order to prove the justification of this study, the experimental results were verified with the tests carried out for confirmation.
期刊介绍:
Russian Journal of Non-Ferrous Metals is a journal the main goal of which is to achieve new knowledge in the following topics: extraction metallurgy, hydro- and pirometallurgy, casting, plastic deformation, metallography and heat treatment, powder metallurgy and composites, self-propagating high-temperature synthesis, surface engineering and advanced protected coatings, environments, and energy capacity in non-ferrous metallurgy.