Per-Anders Hansen, Helmer Fjellvåg, Terje G. Finstad, Ola Nilsen
{"title":"Luminescent Properties of Multilayered Eu2O3 and TiO2 Grown by Atomic Layer Deposition**","authors":"Per-Anders Hansen, Helmer Fjellvåg, Terje G. Finstad, Ola Nilsen","doi":"10.1002/cvde.201407113","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <p>Atomic layer deposition (ALD) is used to control the interatomic interactions of Eu and Ti in multilayered structures, as measured by characterizing the luminescent properties of the deposited material. Luminescent multilayer structures of Eu<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> are deposited as thin films by ALD at 300 °C using Eu(thd)<sub>3</sub>/O<sub>3</sub> and TiCl<sub>4</sub>/H<sub>2</sub>O (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) as precursor systems. The individual layer thickness of the multilayered structure is produced from first <i>N</i> ALD cycles Eu<sub>2</sub>O<sub>3</sub> and then <i>N</i> ALD cycles TiO<sub>2</sub> (<i>N</i> = 1 to 50), while the total film thickness is kept constant. The thinnest distinct layers are detected for <i>N</i> = 10, where each layer is measured to be less than 0.4 nm thick. The as-deposited films are smooth (root mean square (rms) roughness < 0.4 nm) and amorphous, independent of the layer thickness, <i>N</i>. The refractive index and extinction coefficient are also independent of <i>N</i>, while the luminescence efficiency is constant for <i>N</i> up to 10 cycles, and decreases for thicker superlayers. Annealing deteriorates the layered structures, causing a decrease in luminescence efficiency for thin superlayers, while thick superlayers increase in efficiency upon annealing. The films are characterized by spectroscopic ellipsometry (SE), photoluminescence (PL), X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray reflectivity (XRR), and atomic force microscopy (AFM).</p>\n </section>\n </div>","PeriodicalId":10093,"journal":{"name":"Chemical Vapor Deposition","volume":"20 7-8-9","pages":"274-281"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cvde.201407113","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Vapor Deposition","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cvde.201407113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Atomic layer deposition (ALD) is used to control the interatomic interactions of Eu and Ti in multilayered structures, as measured by characterizing the luminescent properties of the deposited material. Luminescent multilayer structures of Eu2O3 and TiO2 are deposited as thin films by ALD at 300 °C using Eu(thd)3/O3 and TiCl4/H2O (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) as precursor systems. The individual layer thickness of the multilayered structure is produced from first N ALD cycles Eu2O3 and then N ALD cycles TiO2 (N = 1 to 50), while the total film thickness is kept constant. The thinnest distinct layers are detected for N = 10, where each layer is measured to be less than 0.4 nm thick. The as-deposited films are smooth (root mean square (rms) roughness < 0.4 nm) and amorphous, independent of the layer thickness, N. The refractive index and extinction coefficient are also independent of N, while the luminescence efficiency is constant for N up to 10 cycles, and decreases for thicker superlayers. Annealing deteriorates the layered structures, causing a decrease in luminescence efficiency for thin superlayers, while thick superlayers increase in efficiency upon annealing. The films are characterized by spectroscopic ellipsometry (SE), photoluminescence (PL), X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray reflectivity (XRR), and atomic force microscopy (AFM).
期刊介绍:
Chemical Vapor Deposition (CVD) publishes Reviews, Short Communications, and Full Papers on all aspects of chemical vapor deposition and related technologies, along with other articles presenting opinion, news, conference information, and book reviews. All papers are peer-reviewed. The journal provides a unified forum for chemists, physicists, and engineers whose publications on chemical vapor deposition have in the past been spread over journals covering inorganic chemistry, materials chemistry, organometallics, applied physics and semiconductor technology, thin films, and ceramic processing.