I. N. Senchikhin, M. S. Merkulova, I. P. Sedishev, N. E. Grammatikova, O. Ya. Uryupina, E. K. Urodkova, E. S. Zhavoronok
{"title":"Epoxy-Amine Systems with Reactive Guanidine Derivatives","authors":"I. N. Senchikhin, M. S. Merkulova, I. P. Sedishev, N. E. Grammatikova, O. Ya. Uryupina, E. K. Urodkova, E. S. Zhavoronok","doi":"10.1134/S1560090423700896","DOIUrl":null,"url":null,"abstract":"<p>The modification of epoxy-amine systems with reactive monomeric derivatives based on guanidine has been attempted in order to create novel polymer coatings suppressing activity of pathogens. Preliminary chemical interaction of these compounds with the epoxy component allows their covalent incorporation into the epoxy-amine network to ensure prolonged action of the coating. The synthesized guanidine hydrosalicylate, hydro-4-aminosalicylate, hydro-5-sulfosalicylate, and dihydro-5-sulfosalicylate have been characterized by means of elemental and thermal analysis. The degree of hydrochloride substitution with the organic salt residue and temperature of onset of the thermal decomposition under argon as well as temperatures of the salts vitrification and melting have been determined. Solubility of the synthesized salts in a diane-epoxy oligomer has been estimated. It has been shown that the substitution of hydrochloride with the organic residue noticeably decreases the temperature of the onset of the reaction with the epoxy oligomer. Average functionality of the guanidine salts in the reaction with the epoxy oligomer has been determined; it has been revealed that most of the N‒Н groups of the modifiers are involved in the reaction, in certain cases these being the residues of the organic salts. Stoichiometry of the guanidine‒epoxy oligomer binary mixtures as well as this of the adducts synthesized with the oligomeric amine curing agent Jeffamine D-230 are presented. The initial tests of the obtained films have revealed pronounced bacteriostatic activity towards the methicillin-resistant <i>S. Еpidermidis</i> at the guanidine hydrosalicylate content as low 1 wt %, the parameter of the film forming suppression being 19.2%.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 2","pages":"133 - 143"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090423700896","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The modification of epoxy-amine systems with reactive monomeric derivatives based on guanidine has been attempted in order to create novel polymer coatings suppressing activity of pathogens. Preliminary chemical interaction of these compounds with the epoxy component allows their covalent incorporation into the epoxy-amine network to ensure prolonged action of the coating. The synthesized guanidine hydrosalicylate, hydro-4-aminosalicylate, hydro-5-sulfosalicylate, and dihydro-5-sulfosalicylate have been characterized by means of elemental and thermal analysis. The degree of hydrochloride substitution with the organic salt residue and temperature of onset of the thermal decomposition under argon as well as temperatures of the salts vitrification and melting have been determined. Solubility of the synthesized salts in a diane-epoxy oligomer has been estimated. It has been shown that the substitution of hydrochloride with the organic residue noticeably decreases the temperature of the onset of the reaction with the epoxy oligomer. Average functionality of the guanidine salts in the reaction with the epoxy oligomer has been determined; it has been revealed that most of the N‒Н groups of the modifiers are involved in the reaction, in certain cases these being the residues of the organic salts. Stoichiometry of the guanidine‒epoxy oligomer binary mixtures as well as this of the adducts synthesized with the oligomeric amine curing agent Jeffamine D-230 are presented. The initial tests of the obtained films have revealed pronounced bacteriostatic activity towards the methicillin-resistant S. Еpidermidis at the guanidine hydrosalicylate content as low 1 wt %, the parameter of the film forming suppression being 19.2%.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed