Volumetric Segmentation of Range Images of 3D Objects Using Superquadric Models

Gupta A., Bajcsy R.
{"title":"Volumetric Segmentation of Range Images of 3D Objects Using Superquadric Models","authors":"Gupta A.,&nbsp;Bajcsy R.","doi":"10.1006/ciun.1993.1044","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of part definition, description, and decomposition is central to the shape recognition systems. We present a geometric model-driven framework for segmenting dense range data of complex 3D objects into their constituent parts in terms of surface (biquadrics) and volumetric (superquadrics) primitives, without a priori domain knowledge or stored models. Surface segmentation uses a novel local-to-global iterative regression approach of searching for the best piecewise biquadric description of the data. The region adjacency information, surface discontinuities, and global shape properties are extracted from biquadrics to guide the volumetric segmentation. Superquadric models are recovered by a global-to-local residual-driven procedure, which recursively segments the scene to derive the part-structure. A set of acceptance criteria provide the objective evaluation of intermediate descriptions and decide whether to terminate the procedure, or selectively refine the segmentation. The control module generates hypotheses about superquadric models at clusters of underestimated data and performs controlled extrapolation of part-models by shrinking the global model. Results are presented for real range images of varying complexity, including objects with occluding parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation.</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"58 3","pages":"Pages 302-326"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1993.1044","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966083710442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

The problem of part definition, description, and decomposition is central to the shape recognition systems. We present a geometric model-driven framework for segmenting dense range data of complex 3D objects into their constituent parts in terms of surface (biquadrics) and volumetric (superquadrics) primitives, without a priori domain knowledge or stored models. Surface segmentation uses a novel local-to-global iterative regression approach of searching for the best piecewise biquadric description of the data. The region adjacency information, surface discontinuities, and global shape properties are extracted from biquadrics to guide the volumetric segmentation. Superquadric models are recovered by a global-to-local residual-driven procedure, which recursively segments the scene to derive the part-structure. A set of acceptance criteria provide the objective evaluation of intermediate descriptions and decide whether to terminate the procedure, or selectively refine the segmentation. The control module generates hypotheses about superquadric models at clusters of underestimated data and performs controlled extrapolation of part-models by shrinking the global model. Results are presented for real range images of varying complexity, including objects with occluding parts, and scenes where surface segmentation is not sufficient to guide the volumetric segmentation.

基于超二次模型的三维物体距离图像的体积分割
零件的定义、描述和分解是形状识别系统的核心问题。我们提出了一个几何模型驱动的框架,用于根据表面(双二次曲面)和体积(超二次曲面)原语将复杂3D物体的密集范围数据分割成其组成部分,而不需要先验的领域知识或存储模型。曲面分割使用一种新颖的局部到全局迭代回归方法来搜索数据的最佳分段双二次描述。从双二次曲面中提取区域邻接信息、表面不连续和全局形状属性,指导体分割。采用全局到局部的残差驱动方法对超二次模型进行复原,并对场景进行递归分割,得到部分结构。一套接受标准提供了中间描述的客观评价,并决定是否终止该过程,或有选择地改进分割。控制模块在被低估的数据簇上生成关于超二次模型的假设,并通过缩小全局模型对部分模型进行可控外推。给出了不同复杂性的真实距离图像的结果,包括具有遮挡部分的物体,以及表面分割不足以指导体积分割的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信