E. Tate, Paul W. Bowyer, K. Brown, Deborah F. Smith, A. Holder, R. Leatherbarrow
{"title":"Peptide‐based inhibitors of N‐myristoyl transferase generated from a lipid/combinatorial peptide chimera library","authors":"E. Tate, Paul W. Bowyer, K. Brown, Deborah F. Smith, A. Holder, R. Leatherbarrow","doi":"10.1002/SITA.200500084","DOIUrl":null,"url":null,"abstract":"Peptide aptamers are powerful chemical genetic tools for the dissection of biological networks, but their application to in vivo systems has been limited by the challenging problem of targeting peptides to a specific site on a single target protein. Here we present our initial research on a novel technique for targeting combinatorial peptide aptamers to a protein binding-site using a small-molecule binding-partner (or ‘Trojan horse’). Novel peptide-based inhibitors for Plasmodium falciparum myristoyl-CoA:protein N-myristoyl transferase (PfNMT) have been selected from a one-bead one-compound library using a high-throughput on-bead screening methodology, targeted to the active site of NMT with a myristate (C14 : 0 fatty acid) substrate analogue. From an initial screen of an unbiased 130321-compound library of lipid/combinatorial peptide chimeras, we have selected 6-mer peptides in an on-bead assay which show NMT inhibition with IC50 values ranging down to low micromolar.","PeriodicalId":88702,"journal":{"name":"Signal transduction","volume":"66 1","pages":"160-166"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/SITA.200500084","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal transduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/SITA.200500084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Peptide aptamers are powerful chemical genetic tools for the dissection of biological networks, but their application to in vivo systems has been limited by the challenging problem of targeting peptides to a specific site on a single target protein. Here we present our initial research on a novel technique for targeting combinatorial peptide aptamers to a protein binding-site using a small-molecule binding-partner (or ‘Trojan horse’). Novel peptide-based inhibitors for Plasmodium falciparum myristoyl-CoA:protein N-myristoyl transferase (PfNMT) have been selected from a one-bead one-compound library using a high-throughput on-bead screening methodology, targeted to the active site of NMT with a myristate (C14 : 0 fatty acid) substrate analogue. From an initial screen of an unbiased 130321-compound library of lipid/combinatorial peptide chimeras, we have selected 6-mer peptides in an on-bead assay which show NMT inhibition with IC50 values ranging down to low micromolar.