Invariant Projective Properties Under the Action of the Lie Group \(\textrm{SL}(3;\mathbb {R})\) on \(\mathbb{R}\mathbb{P}^2\)

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Debapriya Biswas, Sandipan Dutta
{"title":"Invariant Projective Properties Under the Action of the Lie Group \\(\\textrm{SL}(3;\\mathbb {R})\\) on \\(\\mathbb{R}\\mathbb{P}^2\\)","authors":"Debapriya Biswas,&nbsp;Sandipan Dutta","doi":"10.1007/s40010-023-00813-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we define the projective action of the Lie group <span>\\(\\textrm{SL}(3;\\mathbb {R})\\)</span> on <span>\\(\\mathbb{R}\\mathbb{P}^2\\)</span>. We have considered all the one-parameter subgroups (up to conjugacy) of <span>\\(\\textrm{SL}(3;\\mathbb {R})\\)</span> and constructed their orbits in two-dimensional homogeneous space by defining the projective action. We obtain the underlying geometry under this action of <span>\\(\\textrm{SL}(3;\\mathbb {R})\\)</span> by finding the corresponding invariant projective properties. We also discuss whether the action of <span>\\(\\textrm{SL}(3;\\mathbb {R})\\)</span> is triply transitive and to find the possible fixed points under the action.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40010-023-00813-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00813-3","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we define the projective action of the Lie group \(\textrm{SL}(3;\mathbb {R})\) on \(\mathbb{R}\mathbb{P}^2\). We have considered all the one-parameter subgroups (up to conjugacy) of \(\textrm{SL}(3;\mathbb {R})\) and constructed their orbits in two-dimensional homogeneous space by defining the projective action. We obtain the underlying geometry under this action of \(\textrm{SL}(3;\mathbb {R})\) by finding the corresponding invariant projective properties. We also discuss whether the action of \(\textrm{SL}(3;\mathbb {R})\) is triply transitive and to find the possible fixed points under the action.

Abstract Image

李群\(\textrm{SL}(3;\mathbb {R})\)对\(\mathbb{R}\mathbb{P}^2\)作用下的不变射影性质
本文定义了李群\(\textrm{SL}(3;\mathbb {R})\)在\(\mathbb{R}\mathbb{P}^2\)上的投影作用。我们考虑了\(\textrm{SL}(3;\mathbb {R})\)的所有单参数子群(直到共轭),并通过定义射影作用在二维齐次空间中构造了它们的轨道。通过寻找对应的不变射影性质,我们得到了在\(\textrm{SL}(3;\mathbb {R})\)作用下的底层几何。讨论了\(\textrm{SL}(3;\mathbb {R})\)的作用是否具有三传递性,以及在此作用下可能存在的不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信