{"title":"Phase transition regulation and caloric effect","authors":"Yuan Lin, Jiazheng Hao, Kaiming Qiao, Yihong Gao, Fengxia Hu, Jing Wang, Tongyun Zhao, Baogen Shen","doi":"10.1007/s11708-023-0860-1","DOIUrl":null,"url":null,"abstract":"<div><p>Solid state refrigeration based on caloric effect is regarded as a potential candidate for replacing vapor-compression refrigeration. Numerous methods have been proposed to optimize the refrigeration properties of caloric materials, of which single field tuning as a relatively simple way has been systemically studied. However, single field tuning with few tunable parameters usually obtains an excellent performance in one specific aspect at the cost of worsening the performance in other aspects, like attaining a large caloric effect with narrowing the transition temperature range and introducing hysteresis. Because of the shortcomings of the caloric effect driven by a single field, multifield tuning on multicaloric materials that have a coupling between different ferro-orders came into view. This review mainly focuses on recent studies that apply this method to improve the cooling performance of materials, consisting of enlarging caloric effects, reducing hysteresis losses, adjusting transition temperatures, and widening transition temperature spans, which indicate that further progress can be made in the application of this method. Furthermore, research on the sign of lattice and spin contributions to the magnetocaloric effect found new phonon evolution mechanisms, calling for more attention on multicaloric effects. Other progress including improving cyclability of FeRh alloys by introducing second phases and realizing a large reversible barocaloric effect by hybridizing carbon chains and inorganic groups is described in brief.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"17 4","pages":"463 - 477"},"PeriodicalIF":3.1000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-023-0860-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Solid state refrigeration based on caloric effect is regarded as a potential candidate for replacing vapor-compression refrigeration. Numerous methods have been proposed to optimize the refrigeration properties of caloric materials, of which single field tuning as a relatively simple way has been systemically studied. However, single field tuning with few tunable parameters usually obtains an excellent performance in one specific aspect at the cost of worsening the performance in other aspects, like attaining a large caloric effect with narrowing the transition temperature range and introducing hysteresis. Because of the shortcomings of the caloric effect driven by a single field, multifield tuning on multicaloric materials that have a coupling between different ferro-orders came into view. This review mainly focuses on recent studies that apply this method to improve the cooling performance of materials, consisting of enlarging caloric effects, reducing hysteresis losses, adjusting transition temperatures, and widening transition temperature spans, which indicate that further progress can be made in the application of this method. Furthermore, research on the sign of lattice and spin contributions to the magnetocaloric effect found new phonon evolution mechanisms, calling for more attention on multicaloric effects. Other progress including improving cyclability of FeRh alloys by introducing second phases and realizing a large reversible barocaloric effect by hybridizing carbon chains and inorganic groups is described in brief.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue