Constant Roll Inflation in Viscous Mimetic Matter-Geomerty Coupling Gravity

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
E. H. Baffou, M. J. S. Houndjo, I. G. Salako, L. D. Gbètoho
{"title":"Constant Roll Inflation in Viscous Mimetic Matter-Geomerty Coupling Gravity","authors":"E. H. Baffou,&nbsp;M. J. S. Houndjo,&nbsp;I. G. Salako,&nbsp;L. D. Gbètoho","doi":"10.1007/s10773-023-05401-0","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate in this work, the inflationary scenario in viscous <i>f</i>(<i>R</i>, <i>T</i>) gravity formalism with mimetic potential and Lagrange multiplier. Considering that our universe contains beside a perfect fluid, a dark energy and a bulk viscous fluid, we obtain through the modified Friedmann equations a main differential equation that may describe the cosmological evolution in viscous mimetic <i>f</i>(<i>R</i>, <i>T</i>) gravity. For particular choice of the model <span>\\(f(R,T) = R +\\alpha R^2+\\beta T^{\\gamma }\\)</span> and for two forms of bulk viscosity coefficient, one as function of the Hubbe parameter <i>H</i>(<i>t</i>) and the other, as density dependent viscosity, we present a numerical results of the inflationary parameters such as the tensor-to-scalar ratio <i>r</i> and the scalar spectral index <span>\\(n_s\\)</span>. A comparison of these results with observational data shows that our model can be used to describe the accelerated expansion of the universe.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"62 9","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-023-05401-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate in this work, the inflationary scenario in viscous f(RT) gravity formalism with mimetic potential and Lagrange multiplier. Considering that our universe contains beside a perfect fluid, a dark energy and a bulk viscous fluid, we obtain through the modified Friedmann equations a main differential equation that may describe the cosmological evolution in viscous mimetic f(RT) gravity. For particular choice of the model \(f(R,T) = R +\alpha R^2+\beta T^{\gamma }\) and for two forms of bulk viscosity coefficient, one as function of the Hubbe parameter H(t) and the other, as density dependent viscosity, we present a numerical results of the inflationary parameters such as the tensor-to-scalar ratio r and the scalar spectral index \(n_s\). A comparison of these results with observational data shows that our model can be used to describe the accelerated expansion of the universe.

粘性模拟物质-几何耦合重力中的恒滚胀
本文研究了具有拟势和拉格朗日乘子的粘性f(R, T)重力形式下的暴胀情形。考虑到我们的宇宙除了包含完美流体之外,还包含暗能量和大块粘性流体,我们通过修正的弗里德曼方程得到了一个可以描述粘性模拟f(R, T)引力下宇宙演化的主微分方程。对于模型\(f(R,T) = R +\alpha R^2+\beta T^{\gamma }\)的特殊选择和两种形式的体积粘度系数,一种是Hubbe参数H(t)的函数,另一种是密度依赖的粘度,我们给出了膨胀参数如张量标量比r和标量谱指数\(n_s\)的数值结果。这些结果与观测数据的比较表明,我们的模型可以用来描述宇宙的加速膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信