Microstructural, biocompatibility and mechanical investigation of MgHAp and AgHAp: Comparative report

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Anuradha Mahanty, Deep Shikha
{"title":"Microstructural, biocompatibility and mechanical investigation of MgHAp and AgHAp: Comparative report","authors":"Anuradha Mahanty,&nbsp;Deep Shikha","doi":"10.1007/s10856-023-06725-3","DOIUrl":null,"url":null,"abstract":"<p>It is imperative to investigate the effect of addition of different size metallic ions in HAp and study the changes in biocompatibility and mechanical properties. Silver and magnesium ions are two vital ions needed in our body. Silver ions are known to inhibit the microbes, while magnesium ions are known to increase the mechanical properties. The present study reports the comparative properties of MgHAp and AgHAp synthesised by sol-gel wet chemical method. Changes in the morphology, phase analysis, corrosion resistance, dielectric properties, hardness and the thrombus behaviour of HAp doped Ag and Mg ions has been investigated. In this work, we have presented a comparative study of both the metal doped ionsto find which of the ions and which weight percent of the ions can be best suited to be incorporated into the HAp matrix for hard tissue implants. All wt% AgHAp showed the better corrosion resistance than all the MgHAp samples. However, MgHAp showed higher value of hardness in comparison to AgHAp samples. The mechanical strength was found to increase with the increase in Mg wt% in MgHAp but for AgHAp the hardness value decreased with increase in the concentration. The impedance and dielectric loss decreased with increasing frequency for both the samples. Both the ion doped hydroxyapatite showed moderate clotting behaviour as compared to pure HAp. But 2 wt% MgHAp and 4 wt% AgHAp showed better thrombogenic behaviour.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-023-06725-3.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-023-06725-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

It is imperative to investigate the effect of addition of different size metallic ions in HAp and study the changes in biocompatibility and mechanical properties. Silver and magnesium ions are two vital ions needed in our body. Silver ions are known to inhibit the microbes, while magnesium ions are known to increase the mechanical properties. The present study reports the comparative properties of MgHAp and AgHAp synthesised by sol-gel wet chemical method. Changes in the morphology, phase analysis, corrosion resistance, dielectric properties, hardness and the thrombus behaviour of HAp doped Ag and Mg ions has been investigated. In this work, we have presented a comparative study of both the metal doped ionsto find which of the ions and which weight percent of the ions can be best suited to be incorporated into the HAp matrix for hard tissue implants. All wt% AgHAp showed the better corrosion resistance than all the MgHAp samples. However, MgHAp showed higher value of hardness in comparison to AgHAp samples. The mechanical strength was found to increase with the increase in Mg wt% in MgHAp but for AgHAp the hardness value decreased with increase in the concentration. The impedance and dielectric loss decreased with increasing frequency for both the samples. Both the ion doped hydroxyapatite showed moderate clotting behaviour as compared to pure HAp. But 2 wt% MgHAp and 4 wt% AgHAp showed better thrombogenic behaviour.

Abstract Image

MgHAp和AgHAp的显微结构、生物相容性和力学研究:比较报告
研究不同尺寸金属离子的加入对HAp的影响,研究其生物相容性和力学性能的变化是十分必要的。银离子和镁离子是我们身体所需要的两种重要离子。众所周知,银离子可以抑制微生物,而镁离子可以提高机械性能。本研究报道了溶胶-凝胶湿化学法合成MgHAp和AgHAp的性能比较。研究了掺杂Ag和Mg离子的形貌、物相分析、耐蚀性、介电性能、硬度和血栓行为的变化。在这项工作中,我们提出了一种金属掺杂离子的比较研究,以发现哪种离子和哪种离子的重量百分比最适合纳入硬组织植入物的HAp基质中。所有wt% AgHAp样品的耐腐蚀性均优于所有MgHAp样品。然而,MgHAp样品的硬度值高于AgHAp样品。MgHAp的机械强度随Mg wt%的增加而增加,而AgHAp的硬度随Mg wt%的增加而降低。两种样品的阻抗和介电损耗均随频率的增加而减小。与纯羟基磷灰石相比,两种离子掺杂羟基磷灰石均表现出适度的凝血行为。但2 wt% MgHAp和4 wt% AgHAp表现出更好的血栓形成行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信