Jérôme Jansen, Xavier Escriva, Fabien Godeferd, Patrick Feugier
{"title":"In silico experiments of intimal hyperplasia development: disendothelization in an axisymmetric idealized artery","authors":"Jérôme Jansen, Xavier Escriva, Fabien Godeferd, Patrick Feugier","doi":"10.1007/s10237-023-01720-7","DOIUrl":null,"url":null,"abstract":"<div><p>We use in silico experiments to study the role of the hemodynamics and of the type of disendothelization on the physiopathology of intimal hyperplasia. We apply a multiscale bio-chemo-mechanical model of intimal hyperplasia on an idealized axisymmetric artery that suffers two kinds of disendothelizations. The model predicts the spatio-temporal evolution of the lesions development, initially localized at the site of damages, and after few days displaced downstream of the damaged zones, these two stages being observed whatever the kind of damage. Considering macroscopic quantities, the model sensitivity to pathology-protective and pathology-promoting zones is qualitatively consistent with experimental findings. The simulated pathological evolutions demonstrate the central role of two parameters: (a) the initial damage shape on the morphology of the incipient stenosis, and (b) the local wall shear stresses on the overall spatio-temporal dynamics of the lesion.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"22 4","pages":"1289 - 1311"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10237-023-01720-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-023-01720-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use in silico experiments to study the role of the hemodynamics and of the type of disendothelization on the physiopathology of intimal hyperplasia. We apply a multiscale bio-chemo-mechanical model of intimal hyperplasia on an idealized axisymmetric artery that suffers two kinds of disendothelizations. The model predicts the spatio-temporal evolution of the lesions development, initially localized at the site of damages, and after few days displaced downstream of the damaged zones, these two stages being observed whatever the kind of damage. Considering macroscopic quantities, the model sensitivity to pathology-protective and pathology-promoting zones is qualitatively consistent with experimental findings. The simulated pathological evolutions demonstrate the central role of two parameters: (a) the initial damage shape on the morphology of the incipient stenosis, and (b) the local wall shear stresses on the overall spatio-temporal dynamics of the lesion.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.