Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Nazeel Sabah, Daya Shanker
{"title":"Development of magnitude correlation equations for the tsunamigenic zones of the Indian Ocean","authors":"Nazeel Sabah,&nbsp;Daya Shanker","doi":"10.1007/s10950-023-10151-x","DOIUrl":null,"url":null,"abstract":"<div><p>There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes have the magnitudes expressed in moment magnitude (M<sub>W</sub>), body wave magnitude (m<sub>b</sub>), local magnitude (M<sub>L</sub>), and surface wave magnitude (M<sub>S</sub>). This study deals with developing regional magnitude correlation equations for tsunamigenic earthquakes of the Indian Ocean. The present investigation estimates the threshold magnitude and focal depth for an earthquake to turn tsunamigenic. It is found that earthquakes above M<sub>W</sub> ≥ 5.9 and focal depth ≤ 80 km have the potential to generate a tsunami in the region. The moment magnitude is the most proper scale to characterize the size of large tsunamigenic earthquakes as it is more directly related to the released energy and does not suffer saturation. Hence, equations have been developed to convert surface wave magnitude (M<sub>S</sub>) to moment magnitude (M<sub>W</sub>) using three types of regression models viz. standard regression (SR), inverse standard regression (ISR), and orthogonal standard regression (OSR). The efficacy of these models has been compared in terms of R-squared and residual analysis. This study indicates that OSR is the best-suited regression model for developing magnitude correlation equations for the three zones of the Indian Ocean region under study. Also, a single unified conversion equation for the whole of the Indian Ocean has been derived with rational accuracy.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":"27 3","pages":"473 - 492"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-023-10151-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-023-10151-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

There is a pressing need for a homogonous tsunami catalogue for the Indian Ocean as nearly 20% of tsunami events worldwide affect the region. Any study on tsunami hazard assessment necessitates a homogenous tsunamigenic earthquake catalogue. The existing records of strong tsunamigenic earthquakes have the magnitudes expressed in moment magnitude (MW), body wave magnitude (mb), local magnitude (ML), and surface wave magnitude (MS). This study deals with developing regional magnitude correlation equations for tsunamigenic earthquakes of the Indian Ocean. The present investigation estimates the threshold magnitude and focal depth for an earthquake to turn tsunamigenic. It is found that earthquakes above MW ≥ 5.9 and focal depth ≤ 80 km have the potential to generate a tsunami in the region. The moment magnitude is the most proper scale to characterize the size of large tsunamigenic earthquakes as it is more directly related to the released energy and does not suffer saturation. Hence, equations have been developed to convert surface wave magnitude (MS) to moment magnitude (MW) using three types of regression models viz. standard regression (SR), inverse standard regression (ISR), and orthogonal standard regression (OSR). The efficacy of these models has been compared in terms of R-squared and residual analysis. This study indicates that OSR is the best-suited regression model for developing magnitude correlation equations for the three zones of the Indian Ocean region under study. Also, a single unified conversion equation for the whole of the Indian Ocean has been derived with rational accuracy.

Abstract Image

印度洋海啸发生带震级相关方程的建立
由于全世界近20%的海啸事件影响到印度洋地区,因此迫切需要为印度洋编制一份统一的海啸目录。任何海啸灾害评估的研究都需要一个统一的海啸地震目录。现有的强海啸地震记录的震级有矩震级(MW)、体波震级(mb)、局地震级(ML)和面波震级(MS)。本文研究了印度洋海啸性地震的区域震级相关方程。本研究估计了地震变为海啸的阈值震级和震源深度。发现震源深度≤80 km且震级≥5.9 MW以上的地震有可能在该地区引发海啸。矩震级是表征大海啸地震大小的最合适尺度,因为矩震级与释放的能量更直接相关,而且不受饱和影响。因此,利用标准回归(SR)、逆标准回归(ISR)和正交标准回归(OSR)三种回归模型,建立了将表面波震级(MS)转换为矩震级(MW)的方程。根据r平方和残差分析比较了这些模型的有效性。研究表明,OSR是最适合于建立印度洋三带震级相关方程的回归模型。此外,还以合理的精度导出了整个印度洋的统一换算方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信