Construction of GCM Hypersurfaces in Perturbations of Kerr

IF 2.4 1区 数学 Q1 MATHEMATICS
Dawei Shen
{"title":"Construction of GCM Hypersurfaces in Perturbations of Kerr","authors":"Dawei Shen","doi":"10.1007/s40818-023-00152-x","DOIUrl":null,"url":null,"abstract":"<div><p>This is a follow-up of [5] on the general covariant modulated (GCM) procedure in perturbations of Kerr. In this paper, we construct GCM hypersurfaces, which play a central role in extending GCM admissible spacetimes in [7] where decay estimates are derived in the context of nonlinear stability of Kerr family for <span>\\(|a|\\ll m\\)</span>. As in [4], the central idea of the construction of GCM hypersurfaces is to concatenate a 1–parameter family of GCM spheres of [5] by solving an ODE system. The goal of this paper is to get rid of the symmetry restrictions in the GCM procedure introduced in [4] and thus remove an essential obstruction in extending the results to a full stability proof of the Kerr family.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00152-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

This is a follow-up of [5] on the general covariant modulated (GCM) procedure in perturbations of Kerr. In this paper, we construct GCM hypersurfaces, which play a central role in extending GCM admissible spacetimes in [7] where decay estimates are derived in the context of nonlinear stability of Kerr family for \(|a|\ll m\). As in [4], the central idea of the construction of GCM hypersurfaces is to concatenate a 1–parameter family of GCM spheres of [5] by solving an ODE system. The goal of this paper is to get rid of the symmetry restrictions in the GCM procedure introduced in [4] and thus remove an essential obstruction in extending the results to a full stability proof of the Kerr family.

Kerr摄动下GCM超曲面的构造
这是[5]在Kerr扰动中的一般协变调制(GCM)过程的后续。在本文中,我们构造了GCM超曲面,它在[7]中扩展GCM容许时空中起着核心作用,其中在Kerr族的非线性稳定性的背景下导出了\(|a|\ll m\)的衰变估计。与[4]中一样,构造GCM超曲面的中心思想是通过求解ODE系统来连接[5]的GCM球的1参数族。本文的目标是摆脱[4]中引入的GCM过程中的对称性限制,从而消除将结果扩展到Kerr族的完全稳定性证明的一个重要障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信