Biconservative surfaces in the 4-dimensional Euclidean sphere

IF 1 3区 数学 Q1 MATHEMATICS
Simona Nistor, Cezar Oniciuc, Nurettin Cenk Turgay, Rüya Yeğin Şen
{"title":"Biconservative surfaces in the 4-dimensional Euclidean sphere","authors":"Simona Nistor,&nbsp;Cezar Oniciuc,&nbsp;Nurettin Cenk Turgay,&nbsp;Rüya Yeğin Şen","doi":"10.1007/s10231-023-01323-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study biconservative surfaces with parallel normalized mean curvature vector field (<i>PNMC</i>) in the 4-dimensional unit Euclidean sphere <span>\\(\\mathbb {S}^4\\)</span>. First, we study the existence and uniqueness of such surfaces. We obtain that there exists a 2-parameter family of non-isometric abstract surfaces that admit a (unique) <i>PNMC</i> biconservative immersion in <span>\\(\\mathbb {S}^4\\)</span>. Then, we obtain the local parametrization of these surfaces in the 5-dimensional Euclidean space <span>\\(\\mathbb {E}^5\\)</span>. We end the paper by proving that the substantial codimension of <i>PNMC</i> biconservative surfaces in <span>\\(\\mathbb {S}^n\\)</span>, <span>\\(n\\ge 5\\)</span>, is equal to 2.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01323-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study biconservative surfaces with parallel normalized mean curvature vector field (PNMC) in the 4-dimensional unit Euclidean sphere \(\mathbb {S}^4\). First, we study the existence and uniqueness of such surfaces. We obtain that there exists a 2-parameter family of non-isometric abstract surfaces that admit a (unique) PNMC biconservative immersion in \(\mathbb {S}^4\). Then, we obtain the local parametrization of these surfaces in the 5-dimensional Euclidean space \(\mathbb {E}^5\). We end the paper by proving that the substantial codimension of PNMC biconservative surfaces in \(\mathbb {S}^n\), \(n\ge 5\), is equal to 2.

4维欧氏球面上的双保守曲面
本文研究了4维单位欧几里得球面(\mathbb{S}^4)中具有平行归一化平均曲率向量场(PNMC)的双保守曲面。首先,我们研究了这种曲面的存在性和唯一性。我们得到了存在一个非等距抽象曲面的2-参数族,该族允许(唯一的)PNMC双保守浸入\(\mathbb{S}^4\)中。然后,我们得到了这些曲面在5维欧氏空间中的局部参数化。最后,我们证明了在\(\mathbb{S}^n\),\(n\ge 5\)中PNMC双保守曲面的实余维数等于2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信