Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions

IF 1 3区 数学 Q1 MATHEMATICS
Savvas Andronicou, Emmanouil Milakis
{"title":"Systems of fully nonlinear degenerate elliptic obstacle problems with Dirichlet boundary conditions","authors":"Savvas Andronicou,&nbsp;Emmanouil Milakis","doi":"10.1007/s10231-023-01343-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove existence and uniqueness of viscosity solutions to the following system: For <span>\\( i\\in \\left\\{ 1,2,\\dots ,m\\right\\} \\)</span></p><div><div><span>$$\\begin{aligned}{} &amp; {} \\min \\biggl \\{ F\\bigl ( y,x,u_{i}(y,x),D u_{i}(y,x),D^2 u_{i}(y,x)\\bigl ), u_{i}(y,x)-\\max _{j\\ne i}\\bigl ( u_{j}(y,x)-c_{ij}(y,x)\\bigl )\\biggl \\}\\\\{} &amp; {} =0, \\left( y,x \\right) \\in \\Omega _{L}\\\\{} &amp; {} u_{i}(0,x)=g_{i}(x), x\\in \\bar{\\Omega },\\ u_i(y,x)=f_i(y,x), (y,x)\\in (0,L)\\times \\partial {\\Omega } \\end{aligned}$$</span></div></div><p>where <span>\\( \\Omega \\subset \\mathbb {R}^n \\)</span> is a bounded domain, <span>\\( \\Omega _{L}:=(0,L)\\times \\Omega \\)</span> and <span>\\( F:\\left[ 0,L\\right] \\times \\mathbb {R}^n\\times \\mathbb {R}\\times \\mathbb {R}^n\\times \\mathcal {S}^n\\rightarrow \\mathbb {R}\\)</span> is a general second-order partial differential operator which covers even the fully nonlinear case. (We will call a second-order partial differential operator <span>\\(F:\\left[ 0,L\\right] \\times \\mathbb {R}^n\\times \\mathbb {R}\\times \\mathbb {R}^n\\times \\mathcal {S}^n\\rightarrow \\mathbb {R}\\)</span> fully nonlinear if and only if, it has the following form </p><div><div><span>$$\\begin{aligned} F \\left( y,x,u,D_x u,D_{xx}^2 u\\right) :=\\sum _{|\\alpha |=2}\\alpha _{\\alpha }\\left( y,x,u,D_x u,D_{xx}^2 u \\right) D^{\\alpha }u(y,x)+\\alpha _{0}\\left( y,x,u,D_x u \\right) \\end{aligned}$$</span></div></div><p>with the restriction that at least one of the functional coefficients <span>\\( \\alpha _{\\alpha },\\ |\\alpha |=2, \\)</span> contains a partial derivative term of second order.) Moreover, <i>F</i> belongs to an appropriate subclass of degenerate elliptic operators. Regarding uniqueness, we establish a comparison principle for viscosity sub and supersolutions of the Dirichlet problem. This system appears among others in the theory of the so-called optimal switching problems on bounded domains.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01343-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove existence and uniqueness of viscosity solutions to the following system: For \( i\in \left\{ 1,2,\dots ,m\right\} \)

$$\begin{aligned}{} & {} \min \biggl \{ F\bigl ( y,x,u_{i}(y,x),D u_{i}(y,x),D^2 u_{i}(y,x)\bigl ), u_{i}(y,x)-\max _{j\ne i}\bigl ( u_{j}(y,x)-c_{ij}(y,x)\bigl )\biggl \}\\{} & {} =0, \left( y,x \right) \in \Omega _{L}\\{} & {} u_{i}(0,x)=g_{i}(x), x\in \bar{\Omega },\ u_i(y,x)=f_i(y,x), (y,x)\in (0,L)\times \partial {\Omega } \end{aligned}$$

where \( \Omega \subset \mathbb {R}^n \) is a bounded domain, \( \Omega _{L}:=(0,L)\times \Omega \) and \( F:\left[ 0,L\right] \times \mathbb {R}^n\times \mathbb {R}\times \mathbb {R}^n\times \mathcal {S}^n\rightarrow \mathbb {R}\) is a general second-order partial differential operator which covers even the fully nonlinear case. (We will call a second-order partial differential operator \(F:\left[ 0,L\right] \times \mathbb {R}^n\times \mathbb {R}\times \mathbb {R}^n\times \mathcal {S}^n\rightarrow \mathbb {R}\) fully nonlinear if and only if, it has the following form

$$\begin{aligned} F \left( y,x,u,D_x u,D_{xx}^2 u\right) :=\sum _{|\alpha |=2}\alpha _{\alpha }\left( y,x,u,D_x u,D_{xx}^2 u \right) D^{\alpha }u(y,x)+\alpha _{0}\left( y,x,u,D_x u \right) \end{aligned}$$

with the restriction that at least one of the functional coefficients \( \alpha _{\alpha },\ |\alpha |=2, \) contains a partial derivative term of second order.) Moreover, F belongs to an appropriate subclass of degenerate elliptic operators. Regarding uniqueness, we establish a comparison principle for viscosity sub and supersolutions of the Dirichlet problem. This system appears among others in the theory of the so-called optimal switching problems on bounded domains.

具有Dirichlet边界条件的完全非线性退化椭圆障碍系统
在本文中,我们证明了以下系统的粘性解的存在性和唯一性:对于\(i\In\left\{1,2,\dots,m\right\}\)$$\begin{aligned}{}&;{}\min\bigl\{F\bigl(y,x,u_{i}(y,x),Du_{i};{}=0,\left(y,x\right)\in\Omega _{L}\\{}&;{}u_{i}(0,x)=g_{i}(x),x\in\bar{\Omega},\u_i(y,x)=f_i(y,x),(y,x)\in(0,L)\times\partial{\Omega}\end{aligned}$$其中\(\Omega\subet\mathbb{R}^n\)是有界域,\(\Omega_{L}:=(0,L)\times\Omega\)和\(F:\left[0,L\right]\times\mathbb{R}^n\times\mathbb{R}^ n\times\mathcal{S}^n\rightarrow\mathbb{R}\)是一个一般的二阶偏微分算子,它甚至涵盖了完全非线性的情况。(我们将称一个二阶偏微分算子\(F:\left[0,L\right]\times\mathbb{R}^n\times\mathbb{R}^ n\times\mathcal{S}^n\rightarrow\mathbb{R}\)为完全非线性当且仅当,它具有以下形式$$\beart{aligned}F\left(y,x,u,D_x u,D_{xx}^2 u\right):=\sum_{|\alpha|=2}\alpha_{\alpha}\left(y,x,u,D_x u,D_{xx}^2 u\right 2,\)包含一个二阶偏导数项。)此外,F属于退化椭圆算子的一个适当的子类。关于唯一性,我们建立了Dirichlet问题的粘性次解和粘性超解的比较原理。这个系统出现在有界域上所谓的最优切换问题的理论中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信