{"title":"On Peirce’s 1878 article ‘The probability of induction’: a conceptualistic appraisal","authors":"G. A. Kyriazis","doi":"10.1007/s00407-020-00256-x","DOIUrl":null,"url":null,"abstract":"<div><p>Charles Sanders Peirce wrote the article ‘The probability of induction’ in 1878. It was the fourth article of the series ‘Illustrations of the Logic of Science’ which comprised a total of six articles. According to Peirce, to get a clear idea of the conception of probability, one has ‘to consider what real and sensible difference there is between one degree of probability and another.’ He endorsed what John Venn had called the ‘materialistic view’ of the subject, namely that probability is the proportion of times in which an occurrence of one kind is accompanied by an occurrence of another kind. On the other hand, Peirce recognized the existence of a different interpretation of probability, which was termed by Venn the ‘conceptualistic view,’ namely the degree of belief that ought to be attached to a proposition. Peirce’s intent on writing this article seems to be to inquire about the claims of the conceptualists concerning the problem of induction. After reasoning on some examples, he concluded on the impossibility of assigning probability for induction. We show here that the arguments advanced in his article are not sufficient to support such conclusion. Peirce’s thoughts on the probability of induction surely may have influenced statisticians and research scientists of the twentieth century in shaping data analysis.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00407-020-00256-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-020-00256-x","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Charles Sanders Peirce wrote the article ‘The probability of induction’ in 1878. It was the fourth article of the series ‘Illustrations of the Logic of Science’ which comprised a total of six articles. According to Peirce, to get a clear idea of the conception of probability, one has ‘to consider what real and sensible difference there is between one degree of probability and another.’ He endorsed what John Venn had called the ‘materialistic view’ of the subject, namely that probability is the proportion of times in which an occurrence of one kind is accompanied by an occurrence of another kind. On the other hand, Peirce recognized the existence of a different interpretation of probability, which was termed by Venn the ‘conceptualistic view,’ namely the degree of belief that ought to be attached to a proposition. Peirce’s intent on writing this article seems to be to inquire about the claims of the conceptualists concerning the problem of induction. After reasoning on some examples, he concluded on the impossibility of assigning probability for induction. We show here that the arguments advanced in his article are not sufficient to support such conclusion. Peirce’s thoughts on the probability of induction surely may have influenced statisticians and research scientists of the twentieth century in shaping data analysis.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.