Quantitative Derivation and Scattering of the 3D Cubic NLS in the Energy Space

IF 2.4 1区 数学 Q1 MATHEMATICS
Xuwen Chen, Justin Holmer
{"title":"Quantitative Derivation and Scattering of the 3D Cubic NLS in the Energy Space","authors":"Xuwen Chen,&nbsp;Justin Holmer","doi":"10.1007/s40818-022-00126-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the derivation of the defocusing cubic nonlinear Schrödinger equation (NLS) on <span>\\({\\mathbb {R}}^{3}\\)</span> from quantum <i>N</i>-body dynamics. We reformat the hierarchy approach with Klainerman-Machedon theory and prove a bi-scattering theorem for the NLS to obtain convergence rate estimates under <span>\\(H^{1}\\)</span> regularity. The <span>\\(H^{1}\\)</span> convergence rate estimate we obtain is almost optimal for <span>\\(H^{1}\\)</span> datum, and immediately improves if we have any extra regularity on the limiting initial one-particle state.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-022-00126-5.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00126-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We consider the derivation of the defocusing cubic nonlinear Schrödinger equation (NLS) on \({\mathbb {R}}^{3}\) from quantum N-body dynamics. We reformat the hierarchy approach with Klainerman-Machedon theory and prove a bi-scattering theorem for the NLS to obtain convergence rate estimates under \(H^{1}\) regularity. The \(H^{1}\) convergence rate estimate we obtain is almost optimal for \(H^{1}\) datum, and immediately improves if we have any extra regularity on the limiting initial one-particle state.

三维三次NLS在能量空间中的定量推导和散射
我们考虑了从量子N体动力学出发在\({\mathbb{R}})^{3}上导出散焦三次非线性薛定谔方程(NLS)。我们用Klainerman-Machedon理论对层次方法进行了改进,并证明了NLS的一个双散射定理,以获得\(H^{1}\)正则性下的收敛速度估计。我们得到的\(H^{1}\)收敛速度估计对于\(H^{1)数据几乎是最优的,并且如果我们在极限初始单粒子状态上有任何额外的正则性,则立即改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信