Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator

IF 1 3区 数学 Q1 MATHEMATICS
Helena F. Gonçalves, Dorothee D. Haroske, Leszek Skrzypczak
{"title":"Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator","authors":"Helena F. Gonçalves,&nbsp;Dorothee D. Haroske,&nbsp;Leszek Skrzypczak","doi":"10.1007/s10231-023-01327-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces, <span>\\(\\text {id}_\\tau : {B}_{p_1,q_1}^{s_1,\\tau _1}(\\Omega ) \\hookrightarrow {B}_{p_2,q_2}^{s_2,\\tau _2}(\\Omega )\\)</span> and <span>\\(\\text {id}_\\tau : {F}_{p_1,q_1}^{s_1,\\tau _1}(\\Omega ) \\hookrightarrow {F}_{p_2,q_2}^{s_2,\\tau _2}(\\Omega )\\)</span>, where <span>\\(\\Omega \\subset {{{\\mathbb {R}}}^d}\\)</span> is a bounded domain, obtaining necessary and sufficient conditions for the continuity of <span>\\(\\text {id}_\\tau \\)</span>. This can also be seen as the continuation of our previous studies of compactness of the embeddings in the non-limiting case. Moreover, we also construct Rychkov’s linear, bounded universal extension operator for these spaces.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01327-w.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01327-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces, \(\text {id}_\tau : {B}_{p_1,q_1}^{s_1,\tau _1}(\Omega ) \hookrightarrow {B}_{p_2,q_2}^{s_2,\tau _2}(\Omega )\) and \(\text {id}_\tau : {F}_{p_1,q_1}^{s_1,\tau _1}(\Omega ) \hookrightarrow {F}_{p_2,q_2}^{s_2,\tau _2}(\Omega )\), where \(\Omega \subset {{{\mathbb {R}}}^d}\) is a bounded domain, obtaining necessary and sufficient conditions for the continuity of \(\text {id}_\tau \). This can also be seen as the continuation of our previous studies of compactness of the embeddings in the non-limiting case. Moreover, we also construct Rychkov’s linear, bounded universal extension operator for these spaces.

域上Besov型和Triebel-Lizorkin型空间的极限嵌入和一个扩展算子
本文研究了Besov型和Triebel-Lizorkin型空间的极限嵌入{id}_\τ:{B}_{p_1,q_1}^{s_1,\tau _1}(\Omega)\hookrightarrow{B}_{p_2,q_2}^{s_2,\tau _2}(\Omega)\)和\(\text{id}_\τ:{F}_{p_1,q_1}^{s_1,\tau _1}(\Omega)\hookrightarrow{F}_{p_2,q_2}^{s_2,τ_2}{id}_\τ)。这也可以看作是我们之前对非限制情况下嵌入的紧致性研究的延续。此外,我们还构造了这些空间的Rychkov线性有界泛扩张算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信