Incompressible Euler Limit from Boltzmann Equation with Diffuse Boundary Condition for Analytic Data

IF 2.4 1区 数学 Q1 MATHEMATICS
Juhi Jang, Chanwoo Kim
{"title":"Incompressible Euler Limit from Boltzmann Equation with Diffuse Boundary Condition for Analytic Data","authors":"Juhi Jang,&nbsp;Chanwoo Kim","doi":"10.1007/s40818-021-00108-z","DOIUrl":null,"url":null,"abstract":"<div><p>A rigorous derivation of the incompressible Euler equations with the no-penetration boundary condition from the Boltzmann equation with the diffuse reflection boundary condition has been a challenging open problem. We settle this open question in the affirmative when the initial data of fluid are well-prepared in a real analytic space, in 3D half space. As a key of this advance, we capture the Navier-Stokes equations of </p><div><div><span>$$\\begin{aligned} \\textit{viscosity} \\sim \\frac{\\textit{Knudsen number}}{\\textit{Mach number}} \\end{aligned}$$</span></div></div><p>satisfying the no-slip boundary condition, as an <i>intermediary</i> approximation of the Euler equations through a new Hilbert-type expansion of the Boltzmann equation with the diffuse reflection boundary condition. Aiming to justify the approximation we establish a novel quantitative <span>\\(L^p\\)</span>-<span>\\(L^\\infty \\)</span> estimate of the Boltzmann perturbation around a local Maxwellian of such viscous approximation, along with the commutator estimates and the integrability gain of the hydrodynamic part in various spaces; we also establish direct estimates of the Navier-Stokes equations in higher regularity with the aid of the initial-boundary and boundary layer weights using a recent Green’s function approach. The incompressible Euler limit follows as a byproduct of our framework.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00108-z","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00108-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

Abstract

A rigorous derivation of the incompressible Euler equations with the no-penetration boundary condition from the Boltzmann equation with the diffuse reflection boundary condition has been a challenging open problem. We settle this open question in the affirmative when the initial data of fluid are well-prepared in a real analytic space, in 3D half space. As a key of this advance, we capture the Navier-Stokes equations of

$$\begin{aligned} \textit{viscosity} \sim \frac{\textit{Knudsen number}}{\textit{Mach number}} \end{aligned}$$

satisfying the no-slip boundary condition, as an intermediary approximation of the Euler equations through a new Hilbert-type expansion of the Boltzmann equation with the diffuse reflection boundary condition. Aiming to justify the approximation we establish a novel quantitative \(L^p\)-\(L^\infty \) estimate of the Boltzmann perturbation around a local Maxwellian of such viscous approximation, along with the commutator estimates and the integrability gain of the hydrodynamic part in various spaces; we also establish direct estimates of the Navier-Stokes equations in higher regularity with the aid of the initial-boundary and boundary layer weights using a recent Green’s function approach. The incompressible Euler limit follows as a byproduct of our framework.

具有扩散边界条件的Boltzmann方程的不可压缩Euler极限
从具有扩散反射边界条件的玻尔兹曼方程严格推导不可压缩的无穿透边界条件的欧拉方程一直是一个具有挑战性的开放问题。当流体的初始数据在三维半空间中的真实分析空间中准备好时,我们肯定地解决了这个悬而未决的问题。作为这一进展的关键,我们捕获了满足无滑移边界条件的$$\begin{aligned}\textit{viscosity}\sim\frac{\textit{Knudsen数}}{\textit{Mach数}}\end{align}$$的Navier-Stokes方程,作为欧拉方程的中间近似,通过对具有漫反射边界条件的玻尔兹曼方程进行新的Hilbert型展开。为了证明近似的合理性,我们建立了一个新的关于这种粘性近似的局部Maxwellian的Boltzmann扰动的定量估计,以及流体动力学部分在不同空间中的换向器估计和可积增益;我们还使用最近的格林函数方法,在初始边界层和边界层权重的帮助下,建立了具有更高正则性的Navier-Stokes方程的直接估计。不可压缩的欧拉极限是我们框架的副产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信