Generalized m-Quasi-Einstein manifolds admitting a closed conformal vector field

IF 1 3区 数学 Q1 MATHEMATICS
Rahul Poddar, S. Balasubramanian, Ramesh Sharma
{"title":"Generalized m-Quasi-Einstein manifolds admitting a closed conformal vector field","authors":"Rahul Poddar,&nbsp;S. Balasubramanian,&nbsp;Ramesh Sharma","doi":"10.1007/s10231-023-01335-w","DOIUrl":null,"url":null,"abstract":"<div><p>We study a complete connected generalized <i>m</i>-quasi-Einstein manifold <i>M</i> with finite <i>m</i>, admitting a non-homothetic, non-parallel, complete closed conformal vector field <i>V</i>, and show that either <i>M</i> is isometric to a round sphere, or the Ricci tensor can be expressed explicitly in terms of the conformal data over an open dense subset. In the latter case, we prove that <i>M</i> is a warped product of an open real interval with an Einstein manifold; furthermore, it is conformally flat in dimension 4 and has vanishing Cotton and Bach tensors in dimension &gt; 3. Next, we obtain the same explicit expression for the Ricci tensor, and analogous results, for a gradient Ricci almost soliton endowed with a non-parallel closed conformal vector field.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01335-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a complete connected generalized m-quasi-Einstein manifold M with finite m, admitting a non-homothetic, non-parallel, complete closed conformal vector field V, and show that either M is isometric to a round sphere, or the Ricci tensor can be expressed explicitly in terms of the conformal data over an open dense subset. In the latter case, we prove that M is a warped product of an open real interval with an Einstein manifold; furthermore, it is conformally flat in dimension 4 and has vanishing Cotton and Bach tensors in dimension > 3. Next, we obtain the same explicit expression for the Ricci tensor, and analogous results, for a gradient Ricci almost soliton endowed with a non-parallel closed conformal vector field.

允许闭共形向量场的广义m-拟Einstein流形
我们研究了一个具有有限m的完全连通广义m-拟Einstein流形m,承认了一个非同胚的、非平行的、完全闭合的共形向量场V,并证明了m与一个圆球面等距,或者Ricci张量可以用开稠密子集上的共形数据显式表示。在后一种情况下,我们证明了M是开实区间与爱因斯坦流形的翘曲乘积;此外,它在维度4上是保形平坦的并且在维度>;3.接下来,对于具有非平行闭合共形矢量场的梯度Ricci几乎孤立子,我们获得了Ricci张量的相同显式表达式和类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信