Low-Thrust Orbit Dynamics and Periodic Trajectories in the Earth–Moon System

L. De Leo, M. Pontani
{"title":"Low-Thrust Orbit Dynamics and Periodic Trajectories in the Earth–Moon System","authors":"L. De Leo,&nbsp;M. Pontani","doi":"10.1007/s42496-022-00122-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs the circular restricted three-body problem (CR3BP) as the dynamical framework, for the purpose of investigating low-thrust orbit dynamics in the Earth–Moon system. First, the effect of low thrust on some dynamical structures that exist in the CR3BP is analyzed. Low-thrust capture and escape dynamics in the proximity of the Moon is investigated for preliminary mission analysis. Then, low-thrust periodic orbits—with potential practical application—are detected. To do this, the theorem of mirror trajectories, proven 6 decades ago, is extended to low-thrust trajectories. This represents the theoretical premise for the definition and use of a numerical search methodology based on modified Poincaré maps. This approach leads to identifying several low-thrust periodic orbits in the Earth–Moon system that are infeasible if only unpowered paths are considered. Two possible applications of low-thrust periodic orbits are described: (a) cycling transfer trajectories that connect Earth and Moon continuously, and (b) non-Keplerian periodic paths about the Moon, with potential use as operational orbits for satellite constellations.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"101 2","pages":"171 - 183"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42496-022-00122-9.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-022-00122-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study employs the circular restricted three-body problem (CR3BP) as the dynamical framework, for the purpose of investigating low-thrust orbit dynamics in the Earth–Moon system. First, the effect of low thrust on some dynamical structures that exist in the CR3BP is analyzed. Low-thrust capture and escape dynamics in the proximity of the Moon is investigated for preliminary mission analysis. Then, low-thrust periodic orbits—with potential practical application—are detected. To do this, the theorem of mirror trajectories, proven 6 decades ago, is extended to low-thrust trajectories. This represents the theoretical premise for the definition and use of a numerical search methodology based on modified Poincaré maps. This approach leads to identifying several low-thrust periodic orbits in the Earth–Moon system that are infeasible if only unpowered paths are considered. Two possible applications of low-thrust periodic orbits are described: (a) cycling transfer trajectories that connect Earth and Moon continuously, and (b) non-Keplerian periodic paths about the Moon, with potential use as operational orbits for satellite constellations.

地月系统中的低推力轨道动力学和周期轨道
本研究以圆约束三体问题(CR3BP)为动力学框架,研究地月系统中的低推力轨道动力学。首先,分析了小推力对CR3BP中存在的一些动力结构的影响。对月球附近的低推力捕获和逃逸动力学进行了研究,以进行初步任务分析。然后,探测到具有潜在实际应用价值的低推力周期轨道。为了做到这一点,60年前证明的镜像轨迹定理被扩展到低推力轨迹。这代表了定义和使用基于修正庞加莱映射的数值搜索方法的理论前提。这种方法可以识别地月系统中的几个低推力周期轨道,如果只考虑无动力路径,这些轨道是不可行的。介绍了低推力周期轨道的两种可能应用:(a)连续连接地球和月球的循环转移轨道,以及(b)绕月球的非开普勒周期路径,有可能用作卫星星座的运行轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信