Global Well-Posedness for the Fifth-Order KdV Equation in \(H^{-1}(\pmb {\mathbb {R}})\)

IF 2.4 1区 数学 Q1 MATHEMATICS
Bjoern Bringmann, Rowan Killip, Monica Visan
{"title":"Global Well-Posedness for the Fifth-Order KdV Equation in \\(H^{-1}(\\pmb {\\mathbb {R}})\\)","authors":"Bjoern Bringmann,&nbsp;Rowan Killip,&nbsp;Monica Visan","doi":"10.1007/s40818-021-00111-4","DOIUrl":null,"url":null,"abstract":"<div><p>We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in <span>\\(H^{-1}(\\mathbb {R})\\)</span>. Global well-posedness in <span>\\(L^2({\\mathbb {R}})\\)</span> was shown previously in [8] using the method of commuting flows. Since this method is insensitive to the ambient geometry, it cannot go beyond the sharp <span>\\( L^2\\)</span> threshold for the torus demonstrated in [3]. To prove our result, we introduce a new strategy that integrates dispersive effects into the method of commuting flows.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00111-4","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00111-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

We prove global well-posedness of the fifth-order Korteweg-de Vries equation on the real line for initial data in \(H^{-1}(\mathbb {R})\). Global well-posedness in \(L^2({\mathbb {R}})\) was shown previously in [8] using the method of commuting flows. Since this method is insensitive to the ambient geometry, it cannot go beyond the sharp \( L^2\) threshold for the torus demonstrated in [3]. To prove our result, we introduce a new strategy that integrates dispersive effects into the method of commuting flows.

五阶KdV方程在(H^{-1}(\pmb{\mathbb{R})中的全局适定性
对于\(H^{-1}(\mathbb{R})\)中的初始数据,我们证明了实线上五阶Korteweg-de-Vries方程的全局适定性。在[8]中使用交换流方法显示了\(L^2({\mathbb{R}})\)中的全局适定性。由于该方法对环境几何不敏感,因此它不能超过[3]中证明的环面的尖锐阈值。为了证明我们的结果,我们引入了一种新的策略,将分散效应集成到通勤流的方法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信