{"title":"Stability of Transonic Contact Discontinuity for Two-Dimensional Steady Compressible Euler Flows in a Finitely Long Nozzle","authors":"Feimin Huang, Jie Kuang, Dehua Wang, Wei Xiang","doi":"10.1007/s40818-021-00113-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the stability of transonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-type problem of transonic flows across a contact discontinuity as a free boundary in nozzles. We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in the new coordinates. However, the upper nozzle wall in the subsonic region depending on the mass flux becomes a free boundary after the transformation. Then we develop new ideas and techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and generate a new iteration scheme to solve the corresponding fixed boundary value problem of the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2) we update the new free boundary by constructing a mapping that has a fixed point; (3) we establish via the inverse Lagrangian coordinate transformation that the original free interface problem admits a unique piecewise smooth transonic solution near the background state, which consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-021-00113-2.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00113-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
Abstract
We consider the stability of transonic contact discontinuity for the two-dimensional steady compressible Euler flows in a finitely long nozzle. This is the first work on the mixed-type problem of transonic flows across a contact discontinuity as a free boundary in nozzles. We start with the Euler-Lagrangian transformation to straighten the contact discontinuity in the new coordinates. However, the upper nozzle wall in the subsonic region depending on the mass flux becomes a free boundary after the transformation. Then we develop new ideas and techniques to solve the free-boundary problem in three steps: (1) we fix the free boundary and generate a new iteration scheme to solve the corresponding fixed boundary value problem of the hyperbolic-elliptic mixed type by building some powerful estimates for both the first-order hyperbolic equation and a second-order nonlinear elliptic equation in a Lipschitz domain; (2) we update the new free boundary by constructing a mapping that has a fixed point; (3) we establish via the inverse Lagrangian coordinate transformation that the original free interface problem admits a unique piecewise smooth transonic solution near the background state, which consists of a smooth subsonic flow and a smooth supersonic flow with a contact discontinuity.