Hao He, Linhao Ge, Zhaolei Li, Xueping Zhou, Fangfang Li
{"title":"Pepino mosaic virus antagonizes plant m6A modification by promoting the autophagic degradation of the m6A writer HAKAI","authors":"Hao He, Linhao Ge, Zhaolei Li, Xueping Zhou, Fangfang Li","doi":"10.1007/s42994-023-00097-6","DOIUrl":null,"url":null,"abstract":"<div><p>Autophagy plays an active anti-viral role in plants. Increasing evidence suggests that viruses can inhibit or manipulate autophagy, thereby winning the arms race between plants and viruses. Here, we demonstrate that overexpression of an m<sup>6</sup>A writer from <i>Solanum lycopersicum</i>, SlHAKAI, could negatively regulate pepino mosaic virus (PepMV) infection, inhibit viral RNA and protein accumulations by affecting viral m<sup>6</sup>A levels in tomato plants and vice versa. The PepMV-encoded RNA-dependent RNA polymerase (RdRP) directly interacts with SlHAKAI and reduces its protein accumulation. The RdRP-mediated decreased protein accumulation of SlHAKAI is sensitive to the autophagy inhibitor 3-methyladenine and is compromised by knocking down a core autophagy gene. Furthermore, PepMV RdRP could interact with an essential autophagy-related protein, SlBeclin1. RdRP, SlHAKAI, and SlBeclin1 interaction complexes form bright granules in the cytoplasm. Silencing of <i>Beclin1</i> in <i>Nicotiana benthamiana</i> plants abolishes the RdRP-mediated degradation of SlHAKAI, indicating the requirement of Beclin1 in this process. This study uncovers that the PepMV RdRP exploits the autophagy pathway by interacting with SlBeclin1 to promote the autophagic degradation of the SlHAKAI protein, thereby inhibiting the m<sup>6</sup>A modification-mediated plant defense responses.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-023-00097-6.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-023-00097-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Autophagy plays an active anti-viral role in plants. Increasing evidence suggests that viruses can inhibit or manipulate autophagy, thereby winning the arms race between plants and viruses. Here, we demonstrate that overexpression of an m6A writer from Solanum lycopersicum, SlHAKAI, could negatively regulate pepino mosaic virus (PepMV) infection, inhibit viral RNA and protein accumulations by affecting viral m6A levels in tomato plants and vice versa. The PepMV-encoded RNA-dependent RNA polymerase (RdRP) directly interacts with SlHAKAI and reduces its protein accumulation. The RdRP-mediated decreased protein accumulation of SlHAKAI is sensitive to the autophagy inhibitor 3-methyladenine and is compromised by knocking down a core autophagy gene. Furthermore, PepMV RdRP could interact with an essential autophagy-related protein, SlBeclin1. RdRP, SlHAKAI, and SlBeclin1 interaction complexes form bright granules in the cytoplasm. Silencing of Beclin1 in Nicotiana benthamiana plants abolishes the RdRP-mediated degradation of SlHAKAI, indicating the requirement of Beclin1 in this process. This study uncovers that the PepMV RdRP exploits the autophagy pathway by interacting with SlBeclin1 to promote the autophagic degradation of the SlHAKAI protein, thereby inhibiting the m6A modification-mediated plant defense responses.