Einsatzmöglichkeiten von Small Area-Verfahren bei Kohortenschätzungen im Zensus 2021

Thomas Zimmermann
{"title":"Einsatzmöglichkeiten von Small Area-Verfahren bei Kohortenschätzungen im Zensus 2021","authors":"Thomas Zimmermann","doi":"10.1007/s11943-019-00243-x","DOIUrl":null,"url":null,"abstract":"<div><h2>Zusammenfassung</h2><div><p> Wie schon 2011 wird auch 2021 in Deutschland wieder ein registergestützter Zensus durchgeführt. Dabei werden die benötigten Informationen soweit wie möglich aus Melderegistern und anderen Verwaltungsdaten zusammengetragen und um weitere Informationen aus Primärerhebungen ergänzt. Eine jener Erhebungen ist die Haushaltsstichprobe, deren wichtigster Zweck die Korrektur der Register um Karteileichen und Fehlbestände zur Schätzung der Einwohnerzahl ist. Darüber hinaus wird mit Hilfe der Haushaltsstichprobe eine Vielzahl von weiteren regional und inhaltlich tief gegliederten Zensusergebnissen ermittelt, wie zum Beispiel für regional und demographisch differenzierte Bevölkerungskohorten.</p><p>Da es nicht möglich ist für alle Kohorten einen ausreichend großen Stichprobenumfang sicherzustellen, können design-basierte Schätzverfahren keine verlässlichen Schätzwerte für jene Kohorten garantieren. Im vorliegenden Beitrag untersuchen wir daher, inwiefern geeignete Small Area-Schätzverfahren verlässliche und plausible Ergebnisse für regional und demographisch differenzierte Bevölkerungskohorten im Zensus liefern können.</p></div></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"13 2","pages":"157 - 177"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11943-019-00243-x","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-019-00243-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Zusammenfassung

Wie schon 2011 wird auch 2021 in Deutschland wieder ein registergestützter Zensus durchgeführt. Dabei werden die benötigten Informationen soweit wie möglich aus Melderegistern und anderen Verwaltungsdaten zusammengetragen und um weitere Informationen aus Primärerhebungen ergänzt. Eine jener Erhebungen ist die Haushaltsstichprobe, deren wichtigster Zweck die Korrektur der Register um Karteileichen und Fehlbestände zur Schätzung der Einwohnerzahl ist. Darüber hinaus wird mit Hilfe der Haushaltsstichprobe eine Vielzahl von weiteren regional und inhaltlich tief gegliederten Zensusergebnissen ermittelt, wie zum Beispiel für regional und demographisch differenzierte Bevölkerungskohorten.

Da es nicht möglich ist für alle Kohorten einen ausreichend großen Stichprobenumfang sicherzustellen, können design-basierte Schätzverfahren keine verlässlichen Schätzwerte für jene Kohorten garantieren. Im vorliegenden Beitrag untersuchen wir daher, inwiefern geeignete Small Area-Schätzverfahren verlässliche und plausible Ergebnisse für regional und demographisch differenzierte Bevölkerungskohorten im Zensus liefern können.

Abstract Image

小面积方法在2021年人口普查中用于队列估计的可能应用
正如2011年一样,德国将进行基于登记册的人口普查。所需信息尽可能从报告登记册和其他行政数据中收集,并由初步调查的进一步信息补充。其中一项调查是家庭样本,其主要目的是更正索引橡树和短缺的登记册,以估计居民人数。此外,预算样本用于确定大量其他人口普查结果,这些结果具有深刻的区域和内容细分,例如区域和人口统计学差异的人口群体。基于设计的估计方法不能保证对这些队列进行可靠的估计。在本文中,我们研究了合适的小面积估计方法在多大程度上可以为人口普查中的区域和人口差异人群提供可靠和可信的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信