Maximal \(L^q\)-Regularity for Parabolic Hamilton–Jacobi Equations and Applications to Mean Field Games

IF 2.4 1区 数学 Q1 MATHEMATICS
Marco Cirant, Alessandro Goffi
{"title":"Maximal \\(L^q\\)-Regularity for Parabolic Hamilton–Jacobi Equations and Applications to Mean Field Games","authors":"Marco Cirant,&nbsp;Alessandro Goffi","doi":"10.1007/s40818-021-00109-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we investigate maximal <span>\\(L^q\\)</span>-regularity for time-dependent viscous Hamilton–Jacobi equations with unbounded right-hand side and superlinear growth in the gradient. Our approach is based on the interplay between new integral and Hölder estimates, interpolation inequalities, and parabolic regularity for linear equations. These estimates are obtained via a duality method à la Evans. This sheds new light on the parabolic counterpart of a conjecture by P.-L. Lions on maximal regularity for Hamilton–Jacobi equations, recently addressed in the stationary framework by the authors. Finally, applications to the existence problem of classical solutions to Mean Field Games systems with unbounded local couplings are provided.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00109-y","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00109-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper we investigate maximal \(L^q\)-regularity for time-dependent viscous Hamilton–Jacobi equations with unbounded right-hand side and superlinear growth in the gradient. Our approach is based on the interplay between new integral and Hölder estimates, interpolation inequalities, and parabolic regularity for linear equations. These estimates are obtained via a duality method à la Evans. This sheds new light on the parabolic counterpart of a conjecture by P.-L. Lions on maximal regularity for Hamilton–Jacobi equations, recently addressed in the stationary framework by the authors. Finally, applications to the existence problem of classical solutions to Mean Field Games systems with unbounded local couplings are provided.

抛物型Hamilton–Jacobi方程的极大正则性及其在平均场对策中的应用
本文研究了具有无界右手边和梯度超线性增长的含时粘性Hamilton–Jacobi方程的极大正则性。我们的方法是基于新的积分和Hölder估计、插值不等式和线性方程的抛物正则性之间的相互作用。这些估计是通过埃文斯对偶方法得到的。这为P.-L.Lions关于Hamilton–Jacobi方程最大正则性的猜想的抛物型对应物提供了新的线索,该猜想最近由作者在平稳框架中提出。最后,给出了具有无界局部耦合的平均场对策系统经典解存在性问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信