{"title":"Anforderungen an eine Statistik-Ausbildung im 21. Jahrhundert vor dem Hintergrund von Statistical (Il‑)Literacy","authors":"Björn Christensen","doi":"10.1007/s11943-019-00263-7","DOIUrl":null,"url":null,"abstract":"<div><h2>Zusammenfassung</h2><div><p>Im vorliegenden Beitrag wird anhand von exemplarischen Beispielen aufgeführt, welche Anforderungen an den kompetenzorientierten Umgang mit Statistik gestellt werden sollten und wie sich diese Anforderungen vor dem Hintergrund zunehmender Datenverfügbarkeit mit unterschiedlicher Strukturierungsform (Big Data) verändern. Insbesondere in Fächern, in denen die Statistikausbildung nicht zum Kerninhalt gehört, sollte vorrangig das „Denken in Daten(modellen)“ sowie die Interpretation und Bewertung von Ergebnissen statistischer Berechnungen gelehrt werden.</p></div></div>","PeriodicalId":100134,"journal":{"name":"AStA Wirtschafts- und Sozialstatistisches Archiv","volume":"13 3-4","pages":"193 - 201"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11943-019-00263-7","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AStA Wirtschafts- und Sozialstatistisches Archiv","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11943-019-00263-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Zusammenfassung
Im vorliegenden Beitrag wird anhand von exemplarischen Beispielen aufgeführt, welche Anforderungen an den kompetenzorientierten Umgang mit Statistik gestellt werden sollten und wie sich diese Anforderungen vor dem Hintergrund zunehmender Datenverfügbarkeit mit unterschiedlicher Strukturierungsform (Big Data) verändern. Insbesondere in Fächern, in denen die Statistikausbildung nicht zum Kerninhalt gehört, sollte vorrangig das „Denken in Daten(modellen)“ sowie die Interpretation und Bewertung von Ergebnissen statistischer Berechnungen gelehrt werden.