{"title":"Noncommutative Pick–Julia theorems for generalized derivations in Q, Q\\(^*\\) and Schatten–von Neumann ideals of compact operators","authors":"Danko R. Jocić","doi":"10.1007/s43034-023-00291-z","DOIUrl":null,"url":null,"abstract":"<div><p>If <i>C</i> and <i>D</i> are strictly accretive operators on <span>\\({\\mathcal {H}}\\)</span> and at least one of them is normal, such that <span>\\(CX\\!-\\!XD\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{\\Psi }({\\mathcal {H}})}\\)</span> for some <span>\\(X\\in { {{{\\varvec{{\\mathcal {B}}}}}}({\\mathcal H})}\\)</span> and <span>\\(Q^*\\)</span> symmetrically norming function <span>\\(\\Psi ,\\)</span> then for all holomorphic functions <i>h</i>, mapping the open right half (complex) plane into itself, we have <span>\\(h( C\\,\\!)X\\!-\\!Xh(D)\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{\\Psi }({\\mathcal {H}})},\\)</span> satisfying </p><div><div><span>$$\\begin{aligned}&\\bigl \\vert {\\,\\!\\bigl \\vert {(C^*\\!+C)^{ 1/2}\\bigl ({h( C\\,\\!){}X\\!-\\!Xh(D)\\!\\,\\!}\\bigr )(D+D^*\\!\\,\\!)^{ 1/2}}\\bigr \\vert \\,\\!}\\bigr \\vert _\\Psi \\\\&\\leqslant \\bigl \\vert {\\,\\!\\bigl \\vert {\\bigl ({h( C\\,\\!){}^*\\!+h( C\\,\\!){}\\!\\,\\!}\\bigr )^{ 1/2}{({ CX\\!-\\!XD})} \\bigl ({h(D)+h(D)^*\\!\\,\\!}\\bigr )^{ 1/2}}\\bigr \\vert \\,\\!}\\bigr \\vert _\\Psi . \\end{aligned}$$</span></div></div><p>If <span>\\(1\\leqslant q,r,s\\leqslant {+\\infty }\\)</span> and <span>\\(p\\geqslant 2,A,B,X\\in { {{{\\varvec{{\\mathcal {B}}}}}}({\\mathcal H})}\\)</span> and <i>A</i>, <i>B</i> are strict contractions satisfying the condition <span>\\(AX\\!-\\!XB\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{s}({\\mathcal {H}})},\\)</span> then for all holomorphic functions <i>g</i>, mapping the open unit disc into the open right half (complex) plane, <span>\\(g(A)X\\!-\\!Xg(B)\\in { {{{\\varvec{{\\mathcal {C}}}}}}_{s}({\\mathcal {H}})},\\)</span> satisfying Schatten–von Neumann s-norms <span>\\((\\vert {\\;\\!\\vert {\\cdot }\\vert \\;\\!}\\vert _s)\\)</span> inequality </p><div><div><span>$$\\begin{aligned}&\\,\\!\\Bigl \\vert \\!\\,\\!\\Bigl \\vert {\\bigl \\vert {\\!\\,\\!\\bigl ({g(A)^{*}\\!+g(A)\\!\\,\\!}\\bigr )^\\frac{1}{2}\\!{({I\\!-\\!A^{*}\\!A})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^{\\!\\frac{1}{q}-1} \\!\\,\\!{({I\\!-\\!A^{*}\\!A})}^\\frac{1}{2}\\!\\bigl ({g(A)X\\!-\\!Xg(B)\\!\\,\\!}\\bigr )}\\Bigr .\\Bigr .\\\\&\\times \\Bigl .\\Bigl .{{({I\\!-BB^*\\!\\,\\!})}^\\frac{1}{2}\\!\\bigl \\vert {\\!\\,\\!\\bigl ({g(B)+g(B)^{*}\\!\\,\\!}\\bigr )^\\frac{1}{2}\\!{({I\\!-BB^*\\!\\,\\!})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^{\\!\\frac{1}{r}-1}\\!\\,\\!}\\Bigr \\vert \\!\\,\\!\\Bigr \\vert _s \\\\ \\leqslant&\\,\\!\\Bigl \\vert \\!\\,\\!\\Bigl \\vert {\\bigl \\vert {\\!\\,\\!\\bigl ({g(A)^{*}\\!+g(A)\\!\\,\\!}\\bigr )^\\frac{1}{2}\\!{({I\\!-\\!AA^{*}\\!\\,\\!})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^\\frac{1}{q} {({I-AA^*\\!\\,\\!})}^{\\!\\,\\!-\\frac{1}{2}}\\!\\,\\!{({AX\\!-\\!XB})}}\\Bigr .\\Bigr .\\\\&\\times \\Bigl .\\Bigl .{{({I-B^*\\!B})}^{\\!\\,\\!-\\frac{1}{2}}\\!\\,\\!\\bigl \\vert {\\!\\,\\!\\bigl ({g(B)+g(B)^{*} \\!\\,\\!}\\bigr )^\\frac{1}{2} \\!{({I-B^*\\! B})}^\\frac{1}{2}\\!\\,\\!}\\bigr \\vert ^\\frac{1}{r}\\!\\,\\!}\\Bigr \\vert \\!\\,\\!\\Bigr \\vert _s. \\end{aligned}$$</span></div></div><p>Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-023-00291-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00291-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
If C and D are strictly accretive operators on \({\mathcal {H}}\) and at least one of them is normal, such that \(CX\!-\!XD\in { {{{\varvec{{\mathcal {C}}}}}}_{\Psi }({\mathcal {H}})}\) for some \(X\in { {{{\varvec{{\mathcal {B}}}}}}({\mathcal H})}\) and \(Q^*\) symmetrically norming function \(\Psi ,\) then for all holomorphic functions h, mapping the open right half (complex) plane into itself, we have \(h( C\,\!)X\!-\!Xh(D)\in { {{{\varvec{{\mathcal {C}}}}}}_{\Psi }({\mathcal {H}})},\) satisfying
If \(1\leqslant q,r,s\leqslant {+\infty }\) and \(p\geqslant 2,A,B,X\in { {{{\varvec{{\mathcal {B}}}}}}({\mathcal H})}\) and A, B are strict contractions satisfying the condition \(AX\!-\!XB\in { {{{\varvec{{\mathcal {C}}}}}}_{s}({\mathcal {H}})},\) then for all holomorphic functions g, mapping the open unit disc into the open right half (complex) plane, \(g(A)X\!-\!Xg(B)\in { {{{\varvec{{\mathcal {C}}}}}}_{s}({\mathcal {H}})},\) satisfying Schatten–von Neumann s-norms \((\vert {\;\!\vert {\cdot }\vert \;\!}\vert _s)\) inequality
Other variants of some new Pick–Julia-type norm and operator inequalities are also obtained, they both complement the well-known Pick–Julia theorems for operators, obtained by Ky Fan, Ando, and Author, and they also extend these theorems to the field of norm ideals of compact operators, including Schatten–von Neumann ideals.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.