The Spacelike-Characteristic Cauchy Problem of General Relativity in Low Regularity

IF 2.6 1区 数学 Q1 MATHEMATICS
Stefan Czimek, Olivier Graf
{"title":"The Spacelike-Characteristic Cauchy Problem of General Relativity in Low Regularity","authors":"Stefan Czimek,&nbsp;Olivier Graf","doi":"10.1007/s40818-022-00122-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the spacelike-characteristic Cauchy problem for the Einstein vacuum equations. Given initial data on a maximal spacelike hypersurface <span>\\(\\Sigma \\simeq \\overline{B_1} \\subset {{\\mathbb {R}}}^3\\)</span> and the outgoing null hypersurface <span>\\({{\\mathcal {H}}}\\)</span> emanating from <span>\\({\\partial }\\Sigma \\)</span>, we prove <i>a priori</i> estimates for the resulting future development in terms of low-regularity bounds on the initial data at the level of curvature in <span>\\(L^2\\)</span>. The proof uses the bounded <span>\\(L^2\\)</span> curvature theorem [22], the extension procedure for the constraint equations [12], Cheeger-Gromov theory in low regularity [13], the canonical foliation on null hypersurfaces in low regularity [15] and global elliptic estimates for spacelike maximal hypersurfaces.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00122-9","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we study the spacelike-characteristic Cauchy problem for the Einstein vacuum equations. Given initial data on a maximal spacelike hypersurface \(\Sigma \simeq \overline{B_1} \subset {{\mathbb {R}}}^3\) and the outgoing null hypersurface \({{\mathcal {H}}}\) emanating from \({\partial }\Sigma \), we prove a priori estimates for the resulting future development in terms of low-regularity bounds on the initial data at the level of curvature in \(L^2\). The proof uses the bounded \(L^2\) curvature theorem [22], the extension procedure for the constraint equations [12], Cheeger-Gromov theory in low regularity [13], the canonical foliation on null hypersurfaces in low regularity [15] and global elliptic estimates for spacelike maximal hypersurfaces.

低正则广义相对论的类空间特征Cauchy问题
本文研究了爱因斯坦真空方程的类空间特征柯西问题。给定极大类空超曲面(\ Sigma\ simeq\ overline{B_1}\ subset{\mathbb{R}}}^3\)上的初始数据和源自\({\partial}\ Sigma)的传出零超曲面({\math cal{H}}})上的原始数据,我们在\(L^2)中的曲率水平上,根据初始数据的低正则性边界,证明了对由此产生的未来发展的先验估计。该证明使用了有界\(L^2)曲率定理[22]、约束方程的扩展过程[12]、低正则性中的Cheeger-Gromov理论[13]、低正则度中的零超曲面上的正则叶理[15]以及类空间极大超曲面的全局椭圆估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信