{"title":"Robust stacking-based ensemble learning model for forest fire detection","authors":"K. Akyol","doi":"10.1007/s13762-023-05194-z","DOIUrl":null,"url":null,"abstract":"<div><p>Forests reduce soil erosion and prevent drought, wind, and other natural disasters. Forest fires, which threaten millions of hectares of forest area yearly, destroy these precious resources. This study aims to design a deep learning model with high accuracy to intervene in forest fires at an early stage. A stacked-based ensemble learning model is proposed for fire detection from forest landscape images in this context. This model offers high test accuracies of 97.37%, 95.79%, and 95.79% with hold-out validation, fivefold cross-validation, and tenfold cross-validation experiments, respectively. The artificial intelligence model developed in this study could be used in real-time systems run on unmanned aerial vehicles to prevent potential disasters in forest areas.</p><h3>Graphical abstract</h3><p>Block diagram of the proposed model</p>\n <div><figure><div><div><picture><source><img></source></picture></div></div></figure></div>\n </div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"20 12","pages":"13245 - 13258"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-023-05194-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Forests reduce soil erosion and prevent drought, wind, and other natural disasters. Forest fires, which threaten millions of hectares of forest area yearly, destroy these precious resources. This study aims to design a deep learning model with high accuracy to intervene in forest fires at an early stage. A stacked-based ensemble learning model is proposed for fire detection from forest landscape images in this context. This model offers high test accuracies of 97.37%, 95.79%, and 95.79% with hold-out validation, fivefold cross-validation, and tenfold cross-validation experiments, respectively. The artificial intelligence model developed in this study could be used in real-time systems run on unmanned aerial vehicles to prevent potential disasters in forest areas.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.