Linear stability analysis of the homogeneous Couette flow in a 2D isentropic compressible fluid

IF 2.4 1区 数学 Q1 MATHEMATICS
Paolo Antonelli, Michele Dolce, Pierangelo Marcati
{"title":"Linear stability analysis of the homogeneous Couette flow in a 2D isentropic compressible fluid","authors":"Paolo Antonelli,&nbsp;Michele Dolce,&nbsp;Pierangelo Marcati","doi":"10.1007/s40818-021-00112-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the linear stability properties of perturbations around the homogeneous Couette flow for a 2D isentropic compressible fluid in the domain <span>\\(\\mathbb {T}\\times \\mathbb {R}\\)</span>. In the inviscid case there is a generic Lyapunov type instability for the density and the irrotational component of the velocity field. More precisely, we prove that their <span>\\(L^2\\)</span> norm grows as <span>\\(t^{1/2}\\)</span> and this confirms previous observations in the physics literature. On the contrary, the solenoidal component of the velocity field experiences inviscid damping, namely it decays to zero even in the absence of viscosity. For a viscous compressible fluid, we show that the perturbations may have a transient growth of order <span>\\(\\nu ^{-1/6}\\)</span> (with <span>\\(\\nu ^{-1}\\)</span> being proportional to the Reynolds number) on a time-scale <span>\\(\\nu ^{-1/3}\\)</span>, after which it decays exponentially fast. This phenomenon is also called enhanced dissipation and our result appears to be the first to detect this mechanism for a compressible flow, where an exponential decay for the density is not a priori trivial given the absence of dissipation in the continuity equation.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-021-00112-3.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00112-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we study the linear stability properties of perturbations around the homogeneous Couette flow for a 2D isentropic compressible fluid in the domain \(\mathbb {T}\times \mathbb {R}\). In the inviscid case there is a generic Lyapunov type instability for the density and the irrotational component of the velocity field. More precisely, we prove that their \(L^2\) norm grows as \(t^{1/2}\) and this confirms previous observations in the physics literature. On the contrary, the solenoidal component of the velocity field experiences inviscid damping, namely it decays to zero even in the absence of viscosity. For a viscous compressible fluid, we show that the perturbations may have a transient growth of order \(\nu ^{-1/6}\) (with \(\nu ^{-1}\) being proportional to the Reynolds number) on a time-scale \(\nu ^{-1/3}\), after which it decays exponentially fast. This phenomenon is also called enhanced dissipation and our result appears to be the first to detect this mechanism for a compressible flow, where an exponential decay for the density is not a priori trivial given the absence of dissipation in the continuity equation.

二维等熵可压缩流体中均匀Couette流的线性稳定性分析
在本文中,我们研究了域\(\mathbb{T}\times\mathbb{R}\)中二维等熵可压缩流体均匀Couette流周围扰动的线性稳定性。在无粘性情况下,速度场的密度和无旋转分量存在一般的李雅普诺夫型不稳定性。更准确地说,我们证明了它们的\(L^2 \)范数随着\(t^{1/2}\)而增长,这证实了物理学文献中先前的观察结果。相反,速度场的螺线管分量经历无粘性阻尼,即即使在没有粘性的情况下,它也会衰减到零。对于粘性可压缩流体,我们证明了扰动在时间尺度上可能具有阶数为(nu^{-1/6})的瞬态增长(其中,与雷诺数成比例),之后它以指数形式快速衰减。这种现象也被称为增强耗散,我们的结果似乎是第一个检测到可压缩流的这种机制,其中,考虑到连续性方程中没有耗散,密度的指数衰减不是先验的微不足道的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信