Spectral Analysis for Singularity Formation of the Two Dimensional Keller–Segel System

IF 2.6 1区 数学 Q1 MATHEMATICS
Charles Collot, Tej-Eddine Ghoul, Nader Masmoudi, Van Tien Nguyen
{"title":"Spectral Analysis for Singularity Formation of the Two Dimensional Keller–Segel System","authors":"Charles Collot,&nbsp;Tej-Eddine Ghoul,&nbsp;Nader Masmoudi,&nbsp;Van Tien Nguyen","doi":"10.1007/s40818-022-00118-5","DOIUrl":null,"url":null,"abstract":"<div><p>We analyse an operator arising in the description of singular solutions to the two-dimensional Keller-Segel problem. It corresponds to the linearised operator in parabolic self-similar variables, close to a concentrated stationary state. This is a two-scale problem, with a vanishing thin transition zone near the origin. Via rigorous matched asymptotic expansions, we describe the eigenvalues and eigenfunctions precisely. We also show a stability result with respect to suitable perturbations, as well as a coercivity estimate for the non-radial part. These results are used as key arguments in a new rigorous proof of the existence and refined description of singular solutions for the Keller–Segel problem by the authors [8]. The present paper extends the result by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in the analysis: this is a singular limit problem, and a degeneracy causes corrections not being polynomial but logarithmic with respect to the main parameter.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00118-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

We analyse an operator arising in the description of singular solutions to the two-dimensional Keller-Segel problem. It corresponds to the linearised operator in parabolic self-similar variables, close to a concentrated stationary state. This is a two-scale problem, with a vanishing thin transition zone near the origin. Via rigorous matched asymptotic expansions, we describe the eigenvalues and eigenfunctions precisely. We also show a stability result with respect to suitable perturbations, as well as a coercivity estimate for the non-radial part. These results are used as key arguments in a new rigorous proof of the existence and refined description of singular solutions for the Keller–Segel problem by the authors [8]. The present paper extends the result by Dejak, Lushnikov, Yu, Ovchinnikov and Sigal [11]. Two major difficulties arise in the analysis: this is a singular limit problem, and a degeneracy causes corrections not being polynomial but logarithmic with respect to the main parameter.

二维Keller-Segel系统奇异性形成的谱分析
我们分析了描述二维Keller-Segel问题奇异解时产生的一个算子。它对应于抛物自相似变量中的线性化算子,接近于集中稳态。这是一个双尺度问题,在原点附近有一个消失的薄过渡区。通过严格的匹配渐近展开,我们精确地描述了本征值和本征函数。我们还展示了关于适当扰动的稳定性结果,以及非径向部分的矫顽力估计。这些结果被用作作者[8]对Keller–Segel问题奇异解存在性的新的严格证明和精细描述的关键论点。本文推广了Dejak、Lushnikov、Yu、Ovchinnikov和Sigal[11]的结果。分析中出现了两个主要困难:这是一个奇异极限问题,退化导致校正不是多项式,而是相对于主要参数的对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信