Right-Covariant Differential Calculus on Hopf Superalgebra \({{\mathbb {F}}}({\mathbb {C}}_q^{2|1})\)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Salih Celik
{"title":"Right-Covariant Differential Calculus on Hopf Superalgebra \\({{\\mathbb {F}}}({\\mathbb {C}}_q^{2|1})\\)","authors":"Salih Celik","doi":"10.1007/s00006-023-01273-z","DOIUrl":null,"url":null,"abstract":"<div><p>We define a new <span>\\({{\\mathbb {Z}}}_2\\)</span>-graded quantum (2+1)-space and show that the extended <span>\\({{\\mathbb {Z}}}_2\\)</span>-graded algebra of polynomials on this <span>\\({{\\mathbb {Z}}}_2\\)</span>-graded quantum space, denoted by <span>\\({\\mathbb F}({{\\mathbb {C}}}_q^{2\\vert 1 })\\)</span>, is a <span>\\({{\\mathbb {Z}}}_2\\)</span>-graded Hopf algebra. We construct a right-covariant differential calculus on <span>\\({{\\mathbb {F}}}({{\\mathbb {C}}}_q^{2\\vert 1 })\\)</span> and define a <span>\\({\\mathbb Z}_2\\)</span>-graded quantum Weyl algebra and mention a few algebraic properties of this algebra. Finally, we explicitly construct the dual <span>\\({{\\mathbb {Z}}}_2\\)</span>-graded Hopf algebra of <span>\\({{\\mathbb {F}}}({\\mathbb C}_q^{2\\vert 1 })\\)</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-023-01273-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We define a new \({{\mathbb {Z}}}_2\)-graded quantum (2+1)-space and show that the extended \({{\mathbb {Z}}}_2\)-graded algebra of polynomials on this \({{\mathbb {Z}}}_2\)-graded quantum space, denoted by \({\mathbb F}({{\mathbb {C}}}_q^{2\vert 1 })\), is a \({{\mathbb {Z}}}_2\)-graded Hopf algebra. We construct a right-covariant differential calculus on \({{\mathbb {F}}}({{\mathbb {C}}}_q^{2\vert 1 })\) and define a \({\mathbb Z}_2\)-graded quantum Weyl algebra and mention a few algebraic properties of this algebra. Finally, we explicitly construct the dual \({{\mathbb {Z}}}_2\)-graded Hopf algebra of \({{\mathbb {F}}}({\mathbb C}_q^{2\vert 1 })\).

Hopf超代数上的右协变微分学
我们定义了一个新的({{\mathbb{Z}})-分次量子(2+1)-空间,并证明了在这个({\math bb{Z})}-分次的量子空间上多项式的扩展({\ mathbb{Z}}{_2})分次代数,表示为({\mathbb F}({\smathbb{C}}_q^{2\vert 1})\),是一个({\\mathbb}Z}}}_2)分次Hopf代数。我们在\({{\mathbb{F}})}({\math bb{C}}}_q^{2}vert 1})上构造了一个右协变微分,并定义了一个\({\mathbb Z}_2)-分次量子Weyl代数,并提到了该代数的一些代数性质。最后,我们显式地构造了\({\mathbb{F}})({\ mathbb C}_q^{2\vert 1}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信