Wan-ting Sun, Li-xia Yan, Shu-chao Li, Xue-chao Li
{"title":"Sharp Bounds on the Aα-index of Graphs in Terms of the Independence Number","authors":"Wan-ting Sun, Li-xia Yan, Shu-chao Li, Xue-chao Li","doi":"10.1007/s10255-023-1049-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given a graph <i>G</i>, the adjacency matrix and degree diagonal matrix of <i>G</i> are denoted by <i>A</i>(<i>G</i>) and <i>D</i>(<i>G</i>), respectively. In 2017, Nikiforov<sup>[24]</sup> proposed the <i>A</i><sub><i>α</i></sub>-matrix: <i>A</i><sub><i>α</i></sub>(<i>G</i>) = <i>αD</i>(<i>G</i>) + (1 − <i>α</i>)<i>A</i>(<i>G</i>), where <i>α</i> ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the <i>A</i><sub><i>α</i></sub>-index of <i>G</i>. In this paper, we characterize the graphs with minimum <i>A</i><sub><i>α</i></sub>-index among <i>n</i>-vertex graphs with independence number <i>i</i> for <i>α</i> ∈ [0, 1), where <span>\\(i = 1,\\,\\,\\left\\lfloor {{n \\over 2}} \\right\\rfloor,\\left\\lceil {{n \\over 2}} \\right\\rceil,\\,\\left\\lfloor {{n \\over 2}} \\right\\rfloor + 1,n - 3,n - 2,n - 1\\)</span>, whereas for <i>i</i> = 2 we consider the same problem for <span>\\(\\alpha \\in [0,{3 \\over 4}]\\)</span>. Furthermore, we determine the unique graph (resp. tree) on <i>n</i> vertices with given independence number having the maximum <i>A</i><sub><i>α</i></sub>-index with <i>α</i> ∈ [0, 1), whereas for the <i>n</i>-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum <i>A</i><sub><i>α</i></sub>-index with <span>\\(\\alpha \\in [{1 \\over 2},1)\\)</span>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"39 3","pages":"656 - 674"},"PeriodicalIF":0.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1049-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph G, the adjacency matrix and degree diagonal matrix of G are denoted by A(G) and D(G), respectively. In 2017, Nikiforov[24] proposed the Aα-matrix: Aα(G) = αD(G) + (1 − α)A(G), where α ∈ [0, 1]. The largest eigenvalue of this novel matrix is called the Aα-index of G. In this paper, we characterize the graphs with minimum Aα-index among n-vertex graphs with independence number i for α ∈ [0, 1), where \(i = 1,\,\,\left\lfloor {{n \over 2}} \right\rfloor,\left\lceil {{n \over 2}} \right\rceil,\,\left\lfloor {{n \over 2}} \right\rfloor + 1,n - 3,n - 2,n - 1\), whereas for i = 2 we consider the same problem for \(\alpha \in [0,{3 \over 4}]\). Furthermore, we determine the unique graph (resp. tree) on n vertices with given independence number having the maximum Aα-index with α ∈ [0, 1), whereas for the n-vertex bipartite graphs with given independence number, we characterize the unique graph having the maximum Aα-index with \(\alpha \in [{1 \over 2},1)\).
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.