{"title":"Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces","authors":"Ding-huai Wang, Jiang Zhou","doi":"10.1007/s10255-023-1077-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the weak Morrey space <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> is contained in the Morrey space <span>\\(M_{{q_1}}^p\\)</span> for 1 ≤ <i>q</i><sub>1</sub> < <i>q</i> ≤ <i>p</i> < ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 < <i>p</i> ≤ <i>q</i> < ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> to <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1077-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We prove that the weak Morrey space WMpq is contained in the Morrey space \(M_{{q_1}}^p\) for 1 ≤ q1 < q ≤ p < ∞. As applications, we show that if the commutator [b, T] is bounded from Lp to Lp,∞ for some p ∈ (1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < p ≤ q < ∞, b ∈ BMO if and only if [6, T] is bounded from Mpq to WMpq. For b belonging to Lipschitz class, we obtain similar results.