Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces

Pub Date : 2023-06-17 DOI:10.1007/s10255-023-1077-0
Ding-huai Wang, Jiang Zhou
{"title":"Characterizations of the BMO and Lipschitz Spaces via Commutators on Weak Lebesgue and Morrey Spaces","authors":"Ding-huai Wang,&nbsp;Jiang Zhou","doi":"10.1007/s10255-023-1077-0","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the weak Morrey space <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> is contained in the Morrey space <span>\\(M_{{q_1}}^p\\)</span> for 1 ≤ <i>q</i><sub>1</sub> &lt; <i>q</i> ≤ <i>p</i> &lt; ∞. As applications, we show that if the commutator [<i>b, T</i>] is bounded from <i>L</i><sup><i>p</i></sup> to <i>L</i><sup><i>p</i>,∞</sup> for some <i>p</i> ∈ (1, ∞), then <i>b</i> ∈ BMO, where <i>T</i> is a Calderón-Zygmund operator. Also, for 1 &lt; <i>p</i> ≤ <i>q</i> &lt; ∞, <i>b</i> ∈ BMO if and only if [6, <i>T</i>] is bounded from <i>M</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span> to <i>WM</i><span>\n <sup><i>p</i></sup><sub><i>q</i></sub>\n \n </span>. For <i>b</i> belonging to Lipschitz class, we obtain similar results.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1077-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We prove that the weak Morrey space WM pq is contained in the Morrey space \(M_{{q_1}}^p\) for 1 ≤ q1 < qp < ∞. As applications, we show that if the commutator [b, T] is bounded from Lp to Lp,∞ for some p ∈ (1, ∞), then b ∈ BMO, where T is a Calderón-Zygmund operator. Also, for 1 < pq < ∞, b ∈ BMO if and only if [6, T] is bounded from M pq to WM pq . For b belonging to Lipschitz class, we obtain similar results.

分享
查看原文
弱Lebesgue和Morrey空间上BMO和Lipschitz空间的交换子刻画
我们证明了弱Morrey空间WM-pq包含在Morrey空间\(M_{{q_1}}^p\)中,对于1≤q1<;q≤p<;∞。作为应用,我们证明了如果交换子[b,T]从Lp到Lp,∞有界,对于一些p∈(1,∞),则b∈BMO,其中T是Calderón-Zygmund算子。此外,对于1<;p≤q<;∞,b∈BMO当且仅当[6,T]从Mpq到WMpq有界。对于属于Lipschitz类的b,我们得到了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信