A Scale-Critical Trapped Surface Formation Criterion: A New Proof Via Signature for Decay Rates

IF 2.4 1区 数学 Q1 MATHEMATICS
Xinliang An
{"title":"A Scale-Critical Trapped Surface Formation Criterion: A New Proof Via Signature for Decay Rates","authors":"Xinliang An","doi":"10.1007/s40818-021-00114-1","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a self-contained proof of a trapped surface formation theorem, which simplifies the previous results by Christodoulou and by An–Luk. Our argument is based on a systematic approach for the scale-critical estimates in An–Luk and it connects Christodoulou’s short-pulse method and Klainerman–Rodnianski’s signature counting argument to the peeling properties previously studied in the small-data regime such as Klainerman–Nicolo. In particular this allows us to avoid elliptic estimates and geometric renormalizations, and gives us new technical improvements and simplifications.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-021-00114-1.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00114-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We provide a self-contained proof of a trapped surface formation theorem, which simplifies the previous results by Christodoulou and by An–Luk. Our argument is based on a systematic approach for the scale-critical estimates in An–Luk and it connects Christodoulou’s short-pulse method and Klainerman–Rodnianski’s signature counting argument to the peeling properties previously studied in the small-data regime such as Klainerman–Nicolo. In particular this allows us to avoid elliptic estimates and geometric renormalizations, and gives us new technical improvements and simplifications.

尺度临界陷阱表面形成准则:衰变率特征的新证明
我们提供了一个陷阱表面形成定理的自包含证明,它简化了Christodoulou和An–Luk先前的结果。我们的论点基于An–Luk中尺度临界估计的系统方法,它将Christodoulou的短脉冲方法和Klainerman–Rodnianski的签名计数论点与之前在小数据体系(如Klainerman-Nicolo)中研究的剥离特性联系起来。特别是,这使我们能够避免椭圆估计和几何重整化,并为我们提供了新的技术改进和简化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信