Quantitative Control of Solutions to the Axisymmetric Navier-Stokes Equations in Terms of the Weak \(L^3\) Norm

IF 2.6 1区 数学 Q1 MATHEMATICS
W. S. Ożański, S. Palasek
{"title":"Quantitative Control of Solutions to the Axisymmetric Navier-Stokes Equations in Terms of the Weak \\(L^3\\) Norm","authors":"W. S. Ożański,&nbsp;S. Palasek","doi":"10.1007/s40818-023-00156-7","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with strong axisymmetric solutions to the 3D incompressible Navier-Stokes equations. We show that if the weak <span>\\(L^3\\)</span> norm of a strong solution <i>u</i> on the time interval [0, <i>T</i>] is bounded by <span>\\(A \\gg 1\\)</span> then for each <span>\\(k\\ge 0 \\)</span> there exists <span>\\(C_k&gt;1\\)</span> such that <span>\\(\\Vert D^k u (t) \\Vert _{L^\\infty (\\mathbb {R}^3)} \\le t^{-(1+k)/2}\\exp \\exp A^{C_k}\\)</span> for all <span>\\(t\\in (0,T]\\)</span>.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"9 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-023-00156-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00156-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with strong axisymmetric solutions to the 3D incompressible Navier-Stokes equations. We show that if the weak \(L^3\) norm of a strong solution u on the time interval [0, T] is bounded by \(A \gg 1\) then for each \(k\ge 0 \) there exists \(C_k>1\) such that \(\Vert D^k u (t) \Vert _{L^\infty (\mathbb {R}^3)} \le t^{-(1+k)/2}\exp \exp A^{C_k}\) for all \(t\in (0,T]\).

轴对称Navier-Stokes方程弱(L^3)范数解的定量控制
我们关注的是三维不可压缩Navier-Stokes方程的强轴对称解。我们证明了如果时间区间[0,T]上强解u的弱\(L^3\)范数由\(a\gg 1\)定界,则对于每个\(k\ge 0\)存在\(C_k>;1\),使得对于所有\(T\in(0,T]\),\(\Vert D^k u(T)\Vert _{L^\infty(\mathbb{R}^3)}\le T^{-(1+k)/2}\exp a^{C_k}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信