Self-intersecting Interfaces for Stationary Solutions of the Two-Fluid Euler Equations

IF 2.4 1区 数学 Q1 MATHEMATICS
Diego Córdoba, Alberto Enciso, Nastasia Grubic
{"title":"Self-intersecting Interfaces for Stationary Solutions of the Two-Fluid Euler Equations","authors":"Diego Córdoba,&nbsp;Alberto Enciso,&nbsp;Nastasia Grubic","doi":"10.1007/s40818-021-00101-6","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that there are stationary solutions to the 2D incompressible free boundary Euler equations with two fluids, possibly with a small gravity constant, that feature a splash singularity. More precisely, in the solutions we construct the interface is a <span>\\(\\mathcal {C}^{2,\\alpha }\\)</span> smooth curve that intersects itself at one point, and the vorticity density on the interface is of class <span>\\(\\mathcal {C}^\\alpha \\)</span>. The proof consists in perturbing Crapper’s family of formal stationary solutions with one fluid, so the crux is to introduce a small but positive second-fluid density. To do so, we use a novel set of weighted estimates for self-intersecting interfaces that squeeze an incompressible fluid. These estimates will also be applied to interface evolution problems in a forthcoming paper.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00101-6","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00101-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We prove that there are stationary solutions to the 2D incompressible free boundary Euler equations with two fluids, possibly with a small gravity constant, that feature a splash singularity. More precisely, in the solutions we construct the interface is a \(\mathcal {C}^{2,\alpha }\) smooth curve that intersects itself at one point, and the vorticity density on the interface is of class \(\mathcal {C}^\alpha \). The proof consists in perturbing Crapper’s family of formal stationary solutions with one fluid, so the crux is to introduce a small but positive second-fluid density. To do so, we use a novel set of weighted estimates for self-intersecting interfaces that squeeze an incompressible fluid. These estimates will also be applied to interface evolution problems in a forthcoming paper.

两类流体Euler方程平稳解的自相交界面
我们证明了含有两种流体的二维不可压缩自由边界Euler方程存在稳定解,可能具有较小的重力常数,具有飞溅奇异性。更准确地说,在我们构造的解中,界面是一条在一点相交的\(\mathcal{C}^{2,\alpha}\)光滑曲线,界面上的涡度密度属于\(\math cal{C}^ \alpha)类。证明在于用一种流体扰动Crapper的形式定常解族,因此关键是引入一个小但正的第二流体密度。为此,我们对挤压不可压缩流体的自相交界面使用了一组新的加权估计。在即将发表的一篇论文中,这些估计也将应用于界面演化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信