A global method for deterministic and stochastic homogenisation in BV

IF 2.4 1区 数学 Q1 MATHEMATICS
Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia, Caterina Ida Zeppieri
{"title":"A global method for deterministic and stochastic homogenisation in BV","authors":"Filippo Cagnetti,&nbsp;Gianni Dal Maso,&nbsp;Lucia Scardia,&nbsp;Caterina Ida Zeppieri","doi":"10.1007/s40818-022-00119-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the deterministic and stochastic homogenisation of free-discontinuity functionals under <i>linear</i> growth and coercivity conditions. The main novelty of our deterministic result is that we work under very general assumptions on the integrands which, in particular, are not required to be periodic in the space variable. Combining this result with the pointwise Subadditive Ergodic Theorem by Akcoglu and Krengel, we prove a stochastic homogenisation result, in the case of stationary random integrands. In particular, we characterise the limit integrands in terms of asymptotic cell formulas, as in the classical case of periodic homogenisation.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40818-022-00119-4.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00119-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we study the deterministic and stochastic homogenisation of free-discontinuity functionals under linear growth and coercivity conditions. The main novelty of our deterministic result is that we work under very general assumptions on the integrands which, in particular, are not required to be periodic in the space variable. Combining this result with the pointwise Subadditive Ergodic Theorem by Akcoglu and Krengel, we prove a stochastic homogenisation result, in the case of stationary random integrands. In particular, we characterise the limit integrands in terms of asymptotic cell formulas, as in the classical case of periodic homogenisation.

BV中确定性和随机均匀化的一种全局方法
本文研究了在线性增长和矫顽力条件下自由间断泛函的确定性和随机均匀化。我们确定性结果的主要新颖之处在于,我们在对被积函数的非常一般的假设下工作,特别是,被积函数在空间变量中不需要是周期性的。将这一结果与Akcoglu和Krengel的逐点次加性遍历定理相结合,我们证明了在平稳随机被积函数的情况下的随机齐化结果。特别地,我们用渐近单元公式来描述极限被积函数,就像在周期均匀化的经典情况下一样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信