{"title":"“The language of Dirac’s theory of radiation”: the inception and initial reception of a tool for the quantum field theorist","authors":"Markus Ehberger","doi":"10.1007/s00407-022-00293-8","DOIUrl":null,"url":null,"abstract":"<div><p>In 1927, Paul Dirac first explicitly introduced the idea that electrodynamical processes can be evaluated by decomposing them into virtual (modern terminology), energy non-conserving subprocesses. This mode of reasoning structured a lot of the perturbative evaluations of quantum electrodynamics during the 1930s. Although the physical picture connected to Feynman diagrams is no longer based on energy non-conserving transitions but on off-shell particles, emission and absorption subprocesses still remain their fundamental constituents. This article will access the introduction and the initial reception of this picture of subsequent transitions (PST) by conceiving of concepts, models, and their representations as tools for the practitioners. I will argue for a multi-factorial explanation of Dirac’s initial, verbally explicit introduction: the mathematical representation he had developed was highly suggestive and already partly conceptualized; Dirac was philosophical flexible enough to talk about transitions when no actual transitions, according to the general interpretation of quantum mechanics of the time, occurred; and, importantly, Dirac eventually used the verbal exposition in the same paper in which he introduced it. The direct impact of PST on the conception of quantum electrodynamical processes will be exemplified by its reflection in diagrammatical representations. The study of the diverging ontological commitments towards PST immediately after its introduction opens up the prehistory of a philosophical debate that stretches out into the present: the dispute about the representational and ontological status of the physical picture connected to the evaluation of the perturbative series of QED and QFT.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"76 6","pages":"531 - 571"},"PeriodicalIF":0.7000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-022-00293-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-022-00293-8","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In 1927, Paul Dirac first explicitly introduced the idea that electrodynamical processes can be evaluated by decomposing them into virtual (modern terminology), energy non-conserving subprocesses. This mode of reasoning structured a lot of the perturbative evaluations of quantum electrodynamics during the 1930s. Although the physical picture connected to Feynman diagrams is no longer based on energy non-conserving transitions but on off-shell particles, emission and absorption subprocesses still remain their fundamental constituents. This article will access the introduction and the initial reception of this picture of subsequent transitions (PST) by conceiving of concepts, models, and their representations as tools for the practitioners. I will argue for a multi-factorial explanation of Dirac’s initial, verbally explicit introduction: the mathematical representation he had developed was highly suggestive and already partly conceptualized; Dirac was philosophical flexible enough to talk about transitions when no actual transitions, according to the general interpretation of quantum mechanics of the time, occurred; and, importantly, Dirac eventually used the verbal exposition in the same paper in which he introduced it. The direct impact of PST on the conception of quantum electrodynamical processes will be exemplified by its reflection in diagrammatical representations. The study of the diverging ontological commitments towards PST immediately after its introduction opens up the prehistory of a philosophical debate that stretches out into the present: the dispute about the representational and ontological status of the physical picture connected to the evaluation of the perturbative series of QED and QFT.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.