Asymptotic decay for defocusing semilinear wave equations in \(\mathbb {R}^{1+1}\)

IF 2.4 1区 数学 Q1 MATHEMATICS
Dongyi Wei, Shiwu Yang
{"title":"Asymptotic decay for defocusing semilinear wave equations in \\(\\mathbb {R}^{1+1}\\)","authors":"Dongyi Wei,&nbsp;Shiwu Yang","doi":"10.1007/s40818-021-00096-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to the study of asymptotic behaviors of solutions to the one-dimensional defocusing semilinear wave equations. We prove that finite energy solution tends to zero in the pointwise sense, hence improving the averaged decay of Lindblad and Tao [4]. Moreover, for sufficiently localized data belonging to some weighted energy space, the solution decays in time with an inverse polynomial rate. This confirms a conjecture raised in the mentioned work. The results are based on new weighted vector fields as multipliers applied to regions bounded by light rays. The key observation for the first result is an integrated local energy decay for the potential energy, while the second result relies on a type of weighted Gagliardo-Nirenberg inequality.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00096-0","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00096-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is devoted to the study of asymptotic behaviors of solutions to the one-dimensional defocusing semilinear wave equations. We prove that finite energy solution tends to zero in the pointwise sense, hence improving the averaged decay of Lindblad and Tao [4]. Moreover, for sufficiently localized data belonging to some weighted energy space, the solution decays in time with an inverse polynomial rate. This confirms a conjecture raised in the mentioned work. The results are based on new weighted vector fields as multipliers applied to regions bounded by light rays. The key observation for the first result is an integrated local energy decay for the potential energy, while the second result relies on a type of weighted Gagliardo-Nirenberg inequality.

在\(\mathbb{R}^{1+1}\)中的离焦双线性波动方程的渐近衰减
本文致力于研究一维离焦双线性波动方程解的渐近性态。我们证明了有限能量解在逐点意义上趋于零,从而改进了Lindblad和Tao[4]的平均衰变。此外,对于属于某个加权能量空间的足够局部化的数据,解以逆多项式速率随时间衰减。这证实了上述工作中提出的一个猜想。结果是基于新的加权矢量场作为应用于光线边界区域的乘法器。第一个结果的关键观察结果是势能的积分局部能量衰减,而第二个结果依赖于一种加权的Gagliardo-Nirenberg不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信