Closure result for \( \Gamma \)-limits of functionals with linear growth

IF 1 3区 数学 Q1 MATHEMATICS
Martin Jesenko
{"title":"Closure result for \\( \\Gamma \\)-limits of functionals with linear growth","authors":"Martin Jesenko","doi":"10.1007/s10231-023-01322-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider integral functionals <span>\\( \\mathcal {F}^{(j)}_{\\varepsilon } \\)</span>, doubly indexed by <span>\\( \\varepsilon &gt; 0 \\)</span> and <span>\\(j \\in \\mathbb N\\cup \\{ \\infty \\}\\)</span>, satisfying a standard linear growth condition. We investigate the question of <span>\\( \\Gamma \\)</span>-closure, i.e., when the <span>\\( \\Gamma \\)</span>-convergence of all families <span>\\( \\{ \\mathcal {F}^{(j)}_{\\varepsilon } \\}_{\\varepsilon }\\)</span> with finite <i>j</i> implies <span>\\( \\Gamma \\)</span>-convergence of <span>\\(\\{ \\mathcal {F}^{(\\infty )}_{\\varepsilon } \\}_{\\varepsilon }\\)</span>. This has already been explored for <i>p</i>-growth with <span>\\( p &gt; 1 \\)</span>. We show by an explicit counterexample that due to the differences between the spaces <span>\\( W^{1,1} \\)</span> and <span>\\( W^{1,p} \\)</span> with <span>\\( p &gt; 1 \\)</span>, an analog cannot hold. Moreover, we find a sufficient condition for a positive answer.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01322-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01322-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider integral functionals \( \mathcal {F}^{(j)}_{\varepsilon } \), doubly indexed by \( \varepsilon > 0 \) and \(j \in \mathbb N\cup \{ \infty \}\), satisfying a standard linear growth condition. We investigate the question of \( \Gamma \)-closure, i.e., when the \( \Gamma \)-convergence of all families \( \{ \mathcal {F}^{(j)}_{\varepsilon } \}_{\varepsilon }\) with finite j implies \( \Gamma \)-convergence of \(\{ \mathcal {F}^{(\infty )}_{\varepsilon } \}_{\varepsilon }\). This has already been explored for p-growth with \( p > 1 \). We show by an explicit counterexample that due to the differences between the spaces \( W^{1,1} \) and \( W^{1,p} \) with \( p > 1 \), an analog cannot hold. Moreover, we find a sufficient condition for a positive answer.

线性增长泛函的\(\Gamma\)-极限的闭包结果
我们考虑满足标准线性增长条件的积分泛函\(\mathcal{F}^{(j)}_{\varepsilon}\),其双索引为\(\varepsilion>;0\)和\(j\in\mathbb N\cup\{\infty\)。我们研究了\(\Gamma\)-闭包的问题,即当所有具有有限j的族\(\{\mathcal{F}^{(j)}_{\varepsilon}\)的\(\Gamma\)-收敛意味着\(\{\mathcal{F}^{。这已经被探索用于具有\(p>;1\)的p生长。我们通过一个显式反例表明,由于空间\(W^{1,1}\)和\(W^{1、p}\与\(p>1)之间的差异,模拟不能成立。此外,我们还找到了一个肯定答案的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信