Non-uniqueness for the Euler Equations up to Onsager’s Critical Exponent

IF 2.4 1区 数学 Q1 MATHEMATICS
Sara Daneri, Eris Runa, László Székelyhidi
{"title":"Non-uniqueness for the Euler Equations up to Onsager’s Critical Exponent","authors":"Sara Daneri,&nbsp;Eris Runa,&nbsp;László Székelyhidi","doi":"10.1007/s40818-021-00097-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we deal with the Cauchy problem for the incompressible Euler equations in the three-dimensional periodic setting. We prove non-uniqueness for an <span>\\(L^2\\)</span>-dense set of Hölder continuous initial data in the class of Hölder continuous admissible weak solutions for all exponents below the Onsager-critical 1/3. Along the way, and more importantly, we identify a natural condition on “blow-up” of the associated subsolution, which acts as the signature of the non-uniqueness mechanism. This improves previous results on non-uniqueness obtained in (Daneri in Comm. Math. Phys. 329(2):745–786, 2014; Daneri and Székelyhidi in Arch. Rat. Mech. Anal. 224: 471–514, 2017) and generalizes (Buckmaster et al. in Comm. Pure Appl. Math. 72(2):229–274, 2018).</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40818-021-00097-z","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-021-00097-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper we deal with the Cauchy problem for the incompressible Euler equations in the three-dimensional periodic setting. We prove non-uniqueness for an \(L^2\)-dense set of Hölder continuous initial data in the class of Hölder continuous admissible weak solutions for all exponents below the Onsager-critical 1/3. Along the way, and more importantly, we identify a natural condition on “blow-up” of the associated subsolution, which acts as the signature of the non-uniqueness mechanism. This improves previous results on non-uniqueness obtained in (Daneri in Comm. Math. Phys. 329(2):745–786, 2014; Daneri and Székelyhidi in Arch. Rat. Mech. Anal. 224: 471–514, 2017) and generalizes (Buckmaster et al. in Comm. Pure Appl. Math. 72(2):229–274, 2018).

达到Onsager临界指数的Euler方程的非唯一性
本文讨论了三维周期环境中不可压缩欧拉方程的柯西问题。我们证明了所有指数在Onsager临界1/3以下的Hölder连续容许弱解类中Hölter连续初始数据的\(L^2)-稠密集的非唯一性。在这一过程中,更重要的是,我们确定了相关亚解“爆破”的自然条件,这是非唯一性机制的标志。这改进了先前在(Daneri in Comm.Math.Phys.329(2):745–7862014;《拱门》中的Daneri和Székelyhidi。老鼠机械。Anal。224:471–5142017)和一般化(Buckmaster等人在Comm.Pure Appl.Math.72(2):229–2742018)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信