New monotonicity formulas for the curve shortening flow in \({\mathbb {R}}^3\)

IF 1 3区 数学 Q1 MATHEMATICS
Hayk Mikayelyan
{"title":"New monotonicity formulas for the curve shortening flow in \\({\\mathbb {R}}^3\\)","authors":"Hayk Mikayelyan","doi":"10.1007/s10231-023-01348-5","DOIUrl":null,"url":null,"abstract":"<div><p>For the curve shortening flow in <span>\\({\\mathbb {R}}^3\\)</span> several new monotonicity formulas are derived. All of them share one main feature: the dependence of the “energy” term on the angle between the position vector and the plane orthogonal to the tangent vector. The first formula deals with the projection of the curve on the unit sphere, and computes the derivative of its length. The second formula is the generalization of the classical formula of G. Huisken, while the third one is the generalization of the monotonicity formula with logarithmic terms previously derived by the author for planar curves.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10231-023-01348-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-023-01348-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For the curve shortening flow in \({\mathbb {R}}^3\) several new monotonicity formulas are derived. All of them share one main feature: the dependence of the “energy” term on the angle between the position vector and the plane orthogonal to the tangent vector. The first formula deals with the projection of the curve on the unit sphere, and computes the derivative of its length. The second formula is the generalization of the classical formula of G. Huisken, while the third one is the generalization of the monotonicity formula with logarithmic terms previously derived by the author for planar curves.

Abstract Image

关于\({\mathbb{R}}^3\)中曲线缩短流的新单调性公式
对于({\mathbb{R}}^3\)中的曲线缩短流,导出了几个新的单调性公式。所有这些都有一个共同的主要特征:“能量”项依赖于位置向量和与切线向量正交的平面之间的角度。第一个公式处理曲线在单位球面上的投影,并计算其长度的导数。第二个公式是G.Huisken经典公式的推广,而第三个公式是作者先前推导的平面曲线的对数项单调性公式的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信