Effective Results on Uniformization and Intrinsic GCM Spheres in Perturbations of Kerr

IF 2.4 1区 数学 Q1 MATHEMATICS
Sergiu Klainerman, Jérémie Szeftel
{"title":"Effective Results on Uniformization and Intrinsic GCM Spheres in Perturbations of Kerr","authors":"Sergiu Klainerman,&nbsp;Jérémie Szeftel","doi":"10.1007/s40818-022-00132-7","DOIUrl":null,"url":null,"abstract":"<div><p>This is a follow-up of our paper (Klainerman and Szeftel in Construction of GCM spheres in perturbations of Kerr, Accepted for publication in Annals of PDE) on the construction of general covariant modulated (GCM) spheres in perturbations of Kerr, which we expect to play a central role in establishing their nonlinear stability. We reformulate the main results of that paper using a canonical definition of <span>\\(\\ell =1\\)</span> modes on a 2-sphere embedded in a <span>\\(1+3\\)</span> vacuum manifold. This is based on a new, effective, version of the classical uniformization theorem which allows us to define such modes and prove their stability for spheres with comparable metrics. The reformulation allows us to prove a second, intrinsic, existence theorem for GCM spheres, expressed purely in terms of geometric quantities defined on it. A natural definition of angular momentum for such GCM spheres is also introduced, which we expect to play a key role in determining the final angular momentum for general perturbations of Kerr.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"8 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-022-00132-7","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

Abstract

This is a follow-up of our paper (Klainerman and Szeftel in Construction of GCM spheres in perturbations of Kerr, Accepted for publication in Annals of PDE) on the construction of general covariant modulated (GCM) spheres in perturbations of Kerr, which we expect to play a central role in establishing their nonlinear stability. We reformulate the main results of that paper using a canonical definition of \(\ell =1\) modes on a 2-sphere embedded in a \(1+3\) vacuum manifold. This is based on a new, effective, version of the classical uniformization theorem which allows us to define such modes and prove their stability for spheres with comparable metrics. The reformulation allows us to prove a second, intrinsic, existence theorem for GCM spheres, expressed purely in terms of geometric quantities defined on it. A natural definition of angular momentum for such GCM spheres is also introduced, which we expect to play a key role in determining the final angular momentum for general perturbations of Kerr.

Kerr摄动下均匀化和本征GCM球的有效结果
这是我们的论文(Klainerman和Szeftel在Kerr扰动中GCM球体的构造中,接受发表在《PDE年鉴》中)的后续,该论文关于Kerr扰动下广义协变调制(GCM)球体的构造,我们希望它在建立其非线性稳定性方面发挥核心作用。我们使用嵌入在\(1+3\)真空流形中的2-球上\(\ell=1\)模的正则定义来重新表述该文的主要结果。这是基于经典一致化定理的一个新的、有效的版本,该定理允许我们定义这种模式,并证明它们对于具有可比度量的球体的稳定性。该公式使我们能够证明GCM球体的第二个内在存在定理,该定理纯粹用其上定义的几何量表示。还引入了此类GCM球体角动量的自然定义,我们希望它在确定Kerr一般扰动的最终角动量方面发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信