Distance Estimates for Action-Minimizing Solutions of the \(N\)-Body Problem

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Kuo-Chang Chen, Bo-Yu Pan
{"title":"Distance Estimates for Action-Minimizing Solutions of the \\(N\\)-Body Problem","authors":"Kuo-Chang Chen,&nbsp;Bo-Yu Pan","doi":"10.1134/S1560354723040044","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we provide estimates for mutual distances of periodic solutions for the Newtonian <span>\\(N\\)</span>-body problem.\nOur estimates are based on masses, total variations of turning angles for relative positions, and predetermined upper bounds for\naction values. Explicit formulae will be proved by iterative arguments.\nWe demonstrate some applications to action-minimizing solutions for three- and four-body problems.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"28 4","pages":"561 - 577"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723040044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we provide estimates for mutual distances of periodic solutions for the Newtonian \(N\)-body problem. Our estimates are based on masses, total variations of turning angles for relative positions, and predetermined upper bounds for action values. Explicit formulae will be proved by iterative arguments. We demonstrate some applications to action-minimizing solutions for three- and four-body problems.

Abstract Image

一类(N)体问题的最小作用解的距离估计
本文给出了牛顿体问题周期解相互距离的估计。我们的估计是基于质量、相对位置的转向角的总变化以及作用值的预定上限。显式公式将通过迭代论证来证明。我们展示了一些应用于三体和三体问题的行动最小化解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信