Wind Turbine Blade Icing Diagnosis Using Convolutional LSTM-GRU With Improved African Vultures Optimization

Wenhe Chen;Hanting Zhou;Longsheng Cheng;Min Xia
{"title":"Wind Turbine Blade Icing Diagnosis Using Convolutional LSTM-GRU With Improved African Vultures Optimization","authors":"Wenhe Chen;Hanting Zhou;Longsheng Cheng;Min Xia","doi":"10.1109/OJIM.2022.3217850","DOIUrl":null,"url":null,"abstract":"Wind farms are usually located in plateau mountains and northern coastal areas, bringing a high probability of blade icing. Blade icing even leads to blade cracks and turbine collapse. Traditional methods of blade icing diagnosis increase operating costs and have the potential risk of damaging the original mechanical structure. A data-driven model based on a novel convolutional recurrent neural network is proposed in this article. The method can effectively extract hidden features for accurate icing diagnosis. The hyperparameters of the proposed model are optimized by the improved African vultures optimization algorithm (IAVOA). To alleviate the critical data imbalance, the adaptive synthetic (ADASYN) is used to oversample the minority classes of icing status. In comparison to the state-of-the-art classification methods, the proposed method illustrates the outstanding effectiveness in blade icing diagnosis using the sensor data from supervisory control and data acquisition (SCADA) systems. The effectiveness analysis of variables, ablation study, and sensitivity analysis validates the performance of the proposed method.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"1 ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/9687502/09967763.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9967763/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wind farms are usually located in plateau mountains and northern coastal areas, bringing a high probability of blade icing. Blade icing even leads to blade cracks and turbine collapse. Traditional methods of blade icing diagnosis increase operating costs and have the potential risk of damaging the original mechanical structure. A data-driven model based on a novel convolutional recurrent neural network is proposed in this article. The method can effectively extract hidden features for accurate icing diagnosis. The hyperparameters of the proposed model are optimized by the improved African vultures optimization algorithm (IAVOA). To alleviate the critical data imbalance, the adaptive synthetic (ADASYN) is used to oversample the minority classes of icing status. In comparison to the state-of-the-art classification methods, the proposed method illustrates the outstanding effectiveness in blade icing diagnosis using the sensor data from supervisory control and data acquisition (SCADA) systems. The effectiveness analysis of variables, ablation study, and sensitivity analysis validates the performance of the proposed method.
基于改进的非洲秃鹫优化的卷积LSTM-GRU的风力涡轮机叶片结冰诊断
风电场通常位于高原山区和北部沿海地区,叶片结冰的概率很高。叶片结冰甚至会导致叶片破裂和涡轮机倒塌。传统的叶片结冰诊断方法增加了运行成本,并存在损坏原始机械结构的潜在风险。本文提出了一种基于新型卷积递归神经网络的数据驱动模型。该方法可以有效地提取隐藏特征,实现结冰的精确诊断。采用改进的非洲秃鹫优化算法(IAVOA)对模型的超参数进行了优化。为了缓解关键数据的不平衡,使用自适应合成(ADASYN)对结冰状态的少数类别进行过采样。与最先进的分类方法相比,所提出的方法说明了使用来自监控和数据采集(SCADA)系统的传感器数据进行叶片结冰诊断的突出有效性。变量的有效性分析、消融研究和灵敏度分析验证了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信