Continuous Real-Time Estimation of Power System Inertia Using Energy Variations and Q-Learning

L. Lavanya;K. Shanti Swarup
{"title":"Continuous Real-Time Estimation of Power System Inertia Using Energy Variations and Q-Learning","authors":"L. Lavanya;K. Shanti Swarup","doi":"10.1109/OJIM.2023.3239777","DOIUrl":null,"url":null,"abstract":"With the growing emphasis on mitigating climate change, the power industry is moving toward renewable energy sources as an alternative to fossil fuel-based power plants. The transition to renewable energy has created numerous challenges, one of which is the low levels of inertia that impact the stability of power systems. Therefore, inertia monitoring has become an integral part of power system operation to dispatch renewable energy sources while maintaining frequency stability. This article presents an online method to continuously estimate the inertia of a power system. The inertia is computed from data provided by Phasor Measurement Units (PMUs) using small variations in frequency and power under ambient conditions. The method uses electrical and kinetic energy variations to compute inertia. In addition, a \n<inline-formula> <tex-math>$Q$ </tex-math></inline-formula>\n-learning-based method is presented to identify mechanical power changes to discard invalid inertia estimates. The method is demonstrated using the IEEE-39 bus system to monitor the regional inertia of the test system.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"2 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9552935/10025401/10026331.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10026331/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the growing emphasis on mitigating climate change, the power industry is moving toward renewable energy sources as an alternative to fossil fuel-based power plants. The transition to renewable energy has created numerous challenges, one of which is the low levels of inertia that impact the stability of power systems. Therefore, inertia monitoring has become an integral part of power system operation to dispatch renewable energy sources while maintaining frequency stability. This article presents an online method to continuously estimate the inertia of a power system. The inertia is computed from data provided by Phasor Measurement Units (PMUs) using small variations in frequency and power under ambient conditions. The method uses electrical and kinetic energy variations to compute inertia. In addition, a $Q$ -learning-based method is presented to identify mechanical power changes to discard invalid inertia estimates. The method is demonstrated using the IEEE-39 bus system to monitor the regional inertia of the test system.
基于能量变化和Q学习的电力系统惯性连续实时估计
随着人们越来越重视缓解气候变化,电力行业正在转向可再生能源,作为化石燃料发电厂的替代品。向可再生能源的过渡带来了许多挑战,其中之一是影响电力系统稳定性的低惯性水平。因此,惯性监测已成为电力系统运行的一个组成部分,以调度可再生能源,同时保持频率稳定。本文提出了一种在线连续估计电力系统惯性的方法。惯性是根据相量测量单元(PMU)提供的数据计算的,使用环境条件下频率和功率的微小变化。该方法利用电能和动能的变化来计算惯性。此外,提出了一种基于$Q$学习的方法来识别机械功率变化,以丢弃无效的惯性估计。利用IEEE-39总线系统对测试系统的区域惯性进行了监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信